Open
Close

Степенные выражения (выражения со степенями) и их преобразование. Преобразование выражений

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8) -3,5 · · (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b ; дробь 11) сократим на а и дробь 12) сократим на 7n . Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

Страница 1 из 1 1

Некоторые алгебраические примеры одним видом способны наводить ужас на школьников. Длинные выражения не только пугают, но и очень затрудняют вычисления. Пытаясь сходу понять, что и за чем следует, недолго запутаться. Именно по этой причине математики всегда стараются максимально упростить «жуткое» задание и только потом приступают к его решению. Как ни странно, такой трюк значительно ускоряет процесс работы.

Упрощение является одним из фундаментальных моментов в алгебре. Если в простых задачах без него ещё можно обойтись, то более трудные для вычисления примеры могут оказаться «не по зубам». Тут-то и пригодятся эти навыки! Тем более что сложных математических знаний не требуется: достаточно будет всего лишь запомнить и научиться применять на практике несколько базовых приёмов и формул.

Вне зависимости от сложности вычислений при решении любого выражения важно соблюдать порядок выполнения операций с числами :

  1. скобки;
  2. возведение в степень;
  3. умножение;
  4. деление;
  5. сложение;
  6. вычитание.

Последние два пункта можно спокойно поменять местами и это никак не отразится на результате. Но складывать два соседних числа, когда рядом с одним из них стоит знак умножения категорически нельзя! Ответ если и получится, то неверный. Поэтому нужно запомнить последовательность.

Применение подобных

К таким элементам относятся числа с переменной одного порядка или одинаковой степени. Существуют и так называемые свободные члены, не имеющие рядом с собой буквенного обозначения неизвестного.

Суть заключается в том, что при отсутствии скобок можно упростить выражение, складывая или вычитая между собой подобные .

Несколько наглядных примеров :

  • 8x 2 и 3x 2 - оба числа имеют одну и ту же переменную второго порядка, поэтому они подобны и при сложении упрощаются до (8+3)x 2 =11x 2 , тогда как при вычитании получается (8-3)x 2 =5x 2 ;
  • 4x 3 и 6x - а тут «х» имеет разную степень;
  • 2y 7 и 33x 7 - содержат различные переменные, поэтому, как и в предыдущем случае, не относятся к подобным.

Разложение числа на множители

Эта маленькая математическая хитрость, если научиться её правильно использовать, в будущем не раз поможет справиться с каверзной задачкой. Да и понять, как работает «система», несложно: разложением называют произведение нескольких элементов, вычисление которого даёт исходное значение . Таким образом, 20 можно представить как на 20×1, 2×10, 5×4, 2×5×2 или другим способом.

На заметку : множители всегда совпадают с делителями. Так что искать рабочую «пару» для разложения нужно среди чисел, на которые исходное делится без остатка.

Проделывать такую операцию можно как со свободными членами, так и с цифрами при переменной. Главное, не потерять последнюю во время вычислений - даже после разложения неизвестная не может взять и «уйти в никуда». Она остаётся при одном из множителей :

  • 15x=3(5x);
  • 60у 2 =(15y 2)4.

Простые числа, которые можно разделить лишь на себя или 1, никогда не раскладываются - в этом нет смысла .

Основные способы упрощения

Первое, за что цепляется взгляд:

  • наличие скобок;
  • дроби;
  • корни.

Алгебраические примеры в школьной программе часто составляются с учётом того, что их можно красиво упростить.

Вычисления в скобках

Внимательно следите за знаком, стоящим перед скобками! Умножение или деление применяется к каждому элементу внутри, а минус - меняет имеющиеся знаки «+» или «-» на противоположные.

Скобки вычисляются по правилам либо по формулам сокращённого умножения, после чего приводятся подобные.

Сокращение дробей

Сокращать дроби тоже несложно. Они сами через раз «охотно убегают», стоит произвести операции с приведением подобных членов. Но упростить пример можно ещё до этого: обращайте внимание на числитель и знаменатель . Они нередко содержат явные или скрытые элементы, которые можно взаимно сократить. Правда, если в первом случае нужно всего лишь вычеркнуть лишнее, во втором придётся подумать, приводя часть выражения к виду для упрощения. Используемые методы:

  • поиск и вынесение за скобки наибольшего общего делителя у числителя и знаменателя;
  • деление каждого верхнего элемента на знаменатель.

Когда выражение или его часть находится под корнем , первостепенная задача упрощения практически аналогична случаю с дробями. Необходимо искать способы полностью от него избавиться или, если это невозможно, максимально сократить мешающий вычислениям знак . Например, до ненавязчивого √(3) или √(7).

Верный способ упростить подкоренное выражение - попытаться разложить его на множители , часть из которых выносится за пределы знака. Наглядный пример: √(90)=√(9×10) =√(9)×√(10)=3√(10).

Другие маленькие хитрости и нюансы:

  • эту операцию упрощения можно проводить с дробями, вынося её за знак как целиком, так и отдельно числитель или знаменатель;
  • раскладывать и выносить за пределы корня часть суммы или разности нельзя ;
  • при работе с переменными обязательно учитывайте её степень, она должна быть равной или кратной корню для возможности вынесения: √(x 2 y)=x√(y), √(x 3)=√(x 2 ×x)=x√(x);
  • иногда допускается избавление от подкоренной переменной путём возведения её в дробную степень: √(y 3)=y 3/2 .

Упрощение степенного выражения

Если в случае простых вычислений на минус или плюс примеры упрощаются за счёт приведения подобных, то как быть при умножении или делении переменных с разными степенями? Их можно легко упростить, запомнив два основных момента:

  1. Если между переменными стоит знак умножения - степени складываются.
  2. Когда они делятся друг на друга - из степени числителя вычитается она же знаменателя.

Единственное условие для такого упрощения - одинаковое основание у обоих членов. Примеры для наглядности:

  • 5x 2 ×4x 7 +(y 13 /y 11)=(5×4)x 2+7 +y 13- 11 =20x 9 +y 2 ;
  • 2z 3 +z×z 2 -(3×z 8 /z 5)=2z 3 +z 1+2 -(3×z 8-5)=2z 3 +z 3 -3z 3 =3z 3 -3z 3 =0.

Отмечаем, что операции с числовыми значениями, стоящими перед переменными, происходят по обычным математическим правилам . И если присмотреться, то становится понятно, что степенные элементы выражения «работают» аналогично:

  • возведение члена в степень обозначает умножение его на самого себя определённое количество раз, т. е. x 2 =x×x;
  • деление аналогично: если разложить степень числителя и знаменателя, то часть переменных сократится, тогда как оставшиеся «собираются», что равносильно вычитанию.

Как и в любом деле, при упрощении алгебраических выражений необходимо не только знание основ, но и практика. Уже через несколько занятий примеры, когда-то кажущиеся сложными, будут сокращаться без особого труда, превращаясь в короткие и легко решаемые.

Видео

Это видео поможет вам разобраться и запомнить, как упрощаются выражения.

Не получили ответ на свой вопрос? Предложите авторам тему.

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
    \(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
    \(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

    Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

    Например, многочлен
    \(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
    можно упростить.

    Представим все слагаемые в виде одночленов стандартного вида:
    \(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
    \(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

    Приведем в полученном многочлене подобные члены:
    \(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
    Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

    За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

    Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
    \(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

    Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

    Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

    Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

    Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

    Преобразование (упрощение) произведения одночлена и многочлена

    С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
    \(9a^2b(7a^2 - 5ab - 4b^2) = \)
    \(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
    \(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

    Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

    Этот результат обычно формулируют в виде правила.

    Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

    Мы уже неоднократно использовали это правило для умножения на сумму.

    Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

    Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

    Обычно пользуются следующим правилом.

    Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

    Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

    С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

    Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
    \((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
    \(= a^2 + 2ab + b^2 \)

    Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

    \((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

    \((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

    \(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

    Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

    Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

    Шаги

    Важные определения

    1. Подобные члены . Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.

      • Например, 3x 2 и 4x 2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
    2. Разложение на множители . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.

      • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
      • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
      • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
    3. Запомните и соблюдайте порядок выполнения операций во избежание ошибок.

      • Скобки
      • Степень
      • Умножение
      • Деление
      • Сложение
      • Вычитание

      Приведение подобных членов

      1. Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.

        • Например, упростите выражение 1 + 2x - 3 + 4x .
      2. Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).

        • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 - это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
      3. Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.

        • 2x + 4x =
        • 1 - 3 = -2
      4. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.

        • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2 , то есть исходное выражение упрощено и с ним легче работать.
      5. Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.

        • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
          • 5(3x-1) + x((2x)/(2)) + 8 - 3x
          • 15x - 5 + x(x) + 8 - 3x
          • 15x - 5 + x 2 + 8 - 3x. Теперь , когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
          • x 2 + (15x - 3x) + (8 - 5)
          • x 2 + 12x + 3

      Вынесение множителя за скобки

      1. Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД - это наибольшее число, на которое делятся все коэффициенты выражения.

        • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
      2. Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.

        • В нашем примере разделите каждый член выражения на 3.
          • 9x 2 /3 = 3x 2
          • 27x/3 = 9x
          • -3/3 = -1
          • Получилось выражение 3x 2 + 9x - 1 . Оно не равно исходному выражению.
      3. Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.

        • В нашем примере: 9x 2 + 27x - 3 = 3(3x 2 + 9x - 1)
      4. Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).

        • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
          • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
          • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
          • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

      Дополнительные методы упрощения

    4. Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
      • √(90)
      • √(9×10)
      • √(9)×√(10)
      • 3×√(10)
      • 3√(10)
    5. Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.

      • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15). В случае умножения сложите степени, а в случае деления – вычтите их.
        • 6x 3 × 8x 4 + (x 17 /x 15)
        • (6 × 8)x 3 + 4 + (x 17 - 15)
        • 48x 7 + x 2
      • Далее приведено объяснение правила умножения и деления членов со степенью.
        • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
        • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .
    • Всегда помните о знаках (плюс или минус), стоящих перед членами выражения, так как многие испытывают затруднения с выбором правильного знака.
    • Попросите о помощи, если это необходимо!
    • Упрощать алгебраические выражения нелегко, но если вы набьете руку, вы сможете использовать этот навык всю жизнь.