Open
Close

Что такое геология и что она изучает. Что такое геология

Геология — это наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников.

Существует три основных направления геологических исследований: описательная, динамическая и историческая геология. У каждого направления существуют свои основные принципы и методы исследования. Описательная геология занимается изучением размещения и состава геологических тел, в том числе их форма, размер, взаимоотношение, последовательность залегания, а также описанием различных минералов и горных пород. Динамическая геология рассматривает эволюцию геологических процессов, таких как разрушение горных пород, перенос их ветром, ледниками, наземными или подземными водами, накопление осадков (внешние по отношению к земной коре) или движение земной коры, землетрясения, извержения вулканов (внутренние). Историческая геология занимается изучением последовательности геологических процессов прошлого.

Происхождение названия

Первоначально слово «геология» являлось противоположностью к слову «теология». Науке о духовной жизни противопоставлялась наука о закономерностях и правилах земного бытия. В таком контексте это слово использовал епископ Р. де Бьюри в своей книге «Philobiblon» («Любовь к книгам»), которая вышла в свет в 1473 году в Кёльне. Слово происходит от греческого γῆ, означающее «Земля» и λόγος, означающее «учение».

Мнения о первом использовании слова «геология» в современном понимании расходятся. По одним источникам, включая БСЭ, этот термин впервые использовал норвежский учёный Миккель Педерсон Эсхолт (М. П. Эшольт, Mikkel Pedersøn Escholt, 1600-1699) в своей книге «Geologica Norvegica» (1657). По другим источникам, слово «геология» было впервые использовано Улиссе Альдрованди в 1603 году, затем Жан Андре Делюк в 1778 году, закрепил термин Орасом Бенедиктом де Соссюром в 1779 году.

Исторически использовался также термин «геогнозия» (или геогностика). Такое название для науки o минералах, рудах, и горных породах было предложено немецкими геологами Г. Фюкселем (в 1761) и A. Г. Bернером (в 1780). Авторы термина обозначили им практические области геологии, изучавщие объекты, которые можно было наблюдать на поверхности, в отличие от чисто теоретической тогда геологии, которая занималась происхождением и историей Земли, её корой и внутренним строением. Термин использовался в специальной литературе в XVIII и начале XIX векa, но начал выходить из употребления уже во второй половине XIX века. В России термин сохранялся до конца XIX века в названиях учёного звания и степени «доктор минералогии и геогнозии» и «профессор минералогии и геогнозии».

Разделы геологии

Геологические дисциплины работают во всех трёх направлениях геологии и точного деления на группы не существует. Новые дисциплины появляются на стыке геологии с другими областями знаний. В БСЭ приводится следующая классификация: науки о земной коре, науки о современных геологических процессах, науки о исторической последовательности геологических процессов, прикладные дисциплины, а также региональная геология.

Минералы образуются в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами.

Науки о земной коре:

  • Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • Структурная геология - раздел геологии, изучающий формы залегания геологических тел и нарушения земной коры.
  • Кристаллография - первоначально одно из напралений минералогии, в настоящее время скорее физическая дисциплина.

Науки о современных геологических процессах (динамическая геология):

  • Тектоника - раздел геологии, изучающий движение земной коры (геотектоника, неотектоника и экспериментальная тектоника).
  • Вулканология — раздел геологии, изучающий вулканизм.
  • Сейсмология — раздел геологии, изучающий геологические процессы при землетрясениях, сейсморайонирование.
  • Геокриология — раздел геологии, изучающий многолетнемёрзлые породы.
  • Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.

Науки о исторической последовательности геологических процессов (историческая геология):

  • Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.

Прикладные дисциплины:

  • Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Делится на геологию нефти газа, геологию угля, металлогению.
  • Гидрогеология - раздел геологии, изучающий подземные воды.
  • Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений.

Внизу перечислены остальные разделы геологии, в основном стоящие на стыке с другими науками:

  • Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • Геохронология - раздел геологии, определяющий возраст пород и минералов.
  • Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.

Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология.

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Ксенолиты и обломки попадают в породы в результате разрушения своего источника, соответственно они образовались раньше вмещающих их пород, и могут быть использованы для определения относительного возраста.

Принцип актуализма постулирует, что геологические силы, действующие в наше время, аналогично работали и в прежние времена. Джеймс Хаттон сформулировал принцип актуализма фразой «Настоящее - ключ к прошлому».

Утверждение не совсем точное. Понятие «сила» - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Правильнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет.

«Принцип актуализма» (или метод актуализма) являются синонимом метода «аналогии». Но метод аналогии не является методом доказательства, он является методом формулирования гипотез и, следовательно, все закономерности, полученные методом актуализма, должны были бы пройти процедуру доказательства их объективности.

В настоящее время принцип актуализма стал тормозом в развитии представлений о геологических процессах.

Принцип первичной горизонтальности утверждает, что морские осадки при образовании залегают горизонтально.

Принцип суперпозиции заключается в том, что породы находящиеся в не нарушенном складчатостью и разломами залегании, следуют в порядке их образования, породы залегающие выше моложе, а те которые находятся ниже по разрезу - древнее.

Принцип финальной сукцессии постулирует, что в одно и то же время в океане распространены одни и те же организмы. Из этого следует, что палеонтолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

История геологии

Первые геологические наблюдения относятся к динамической геологии - это информация о землетрясениях, извержениях вулканов, размывании гор, перемещении береговых линий. Подобные высказывания встречаются в работах таких учёных как Пифагор, Аристотель, Плиний Старший, Страбон. Изучение физических материалов (минералов) Земли восходит по крайней мере к древней Греции, когда Теофраст (372-287 до н. э.) написал работу «Peri Lithon» («О камнях»). В римский период Плиний Старший подробно описал многие минералы и металлы, и их практическое использование, а также правильно определил происхождение янтаря.

Описание минералов и попытки классификации геологических тел встречаются у Аль-Бируни и Ибн Сины (Авиценны) в X-XI веках. В работах Аль-Бируни содержится раннее описание геологии Индии, он предполагал, что индийский субконтинент был когда-то морем. Авиценна предложил подробное объяснение формирования гор, происхождение землетрясений и другие темы, которые являются центральными в современной геологии, и в котором содержится необходимый фундамент для дальнейшего развития науки. Некоторые современные ученые, такие как Филдинг Х. Гаррисон, считают, что современная геология началась в средневековом исламском мире.

В Китае энциклопедист Shen Kuo (1031-1095) сформулировал гипотезу о процессе формирования земли: на основе наблюдений над ископаемыми раковин животных в геологическом слое в горах в сотнях километров от океана он сделал вывод, что суша была сформирована в результате эрозии гор и осаждения ила.

В эпоху Возрождения геологические исследования проводили учёные Леонардо да Винчи и Джироламо Фракасторо. Они впервые предположили, что ископаемые раковины являются остатками вымерших организмов, а также, что история Земли длиннее библейских представлений. Нильс Стенсен дал анализ геологическому разрезу в Тоскане, он объяснил последовательность геологических событий. Ему приписывают три определяющих принципа стратиграфии: принцип суперпозиции (англ.), принцип первичной горизонтальности слоёв (англ.) и принцип последовательности образования геологических тел (англ.).

В конце XVII - начале XVIII века появилась общая теория Земли, которая получила название дилювианизма. По мнению учёных того времени осадочные породы и окаменелости в них образовались в результате всемирного потопа. Эти воззрения разделяли Роберт Гук (1688), Джон Рэй (1692), Джоэнн Вудворд (1695), И. Я. Шёйкцер (1708) и другие.

Во второй половине XVIII века резко возросли потребности в полезных ископаемых, что привело к изучению недр, в частности накоплению фактического материала, описанию свойств горных пород и услови их залегания, разработке приёмов наблюдения. В 1785 году Джеймс Хаттон представил для Королевского общества Эдинбурга документ, озаглавленный «Теория Земли». В этой статье он объяснил свою теорию о том, что Земля должна быть намного старше, чем ранее предполагалось, для того, чтобы обеспечить достаточное время для эрозии гор, и чтобы седименты (отложения) образовали новые породы на дне моря, которые, в свою очередь, были подняты чтобы стать сушей. В 1795 Хаттон опубликовал двухтомный труд, описывающий эти идеи (Vol. 1, Vol. 2). Джеймс Хаттон часто рассматривается как первый современный геолог. Последователи Хаттона были известны как плутонисты, из-за того что они считали, что некоторые породы (базальты и граниты) были сформированы в результате вулканической деятельности и являются результатом осаждения лавы из вулкана. Другой точки зрения придерживались нептунисты, во главе с Абраамом Вернером, который считал, что все породы осели из большого океана, уровень которого с течением времени постепенно снизился, а вулканическую деятельность объяснял подземным горением каменного угля. В то же время в России увидели свет геологические труды Ломоносова «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он признавал влияние и внешних, и внутрених сил на развитие Земли.

Уильям Смит (1769-1839) нарисовал одни из первых геологических карт и начал процесс упорядочивания горных пластов, изучая содержащиеся в них окаменелости. Смит составил «шкалу осадочных образований Англии». Работы по разделению пластов продолжились учёными Жоржем Кювье и А. Броньяру. В 1822 была выделена каменноугольная и меловая системы, что положило начало стратиграфической систематике. Основные подразделения современной стратиграфической шкалы были приняты официально в 1881 году в Болонье на 2-м Международном геологическом конгрессе. Первыми геологическими картами в России были работы Д. Лебедева и М. Иванова (карта Восточного Забайкалья, 1789-1794), Н. И. Кокшарова (Европейская Россия, 1840), Г. П. Гельмерсена («Генеральная карта горных формаций Европейской России», 1841). На картах Кокшарова уже были отмечены силурийская, девонская, нижне карбонская, лиасовая и третичная формации.

Вместе с тем, методологические основы такого деления ещё уточнялись в рамках нескольких теорий. Ж. Кювье разработал теорию катастроф, утверждающую, что особенности Земли формируются в одном, катастрофическом событии и остаются неизменными в дальнейшем. Л.Бух объяснял движения земной коры вулканизмом (теория «кратеров поднятия»), Л. Эли де Бомон связывал дислокацию слоёв со сжатием земной коры при остывании центрального ядра. В 1830 году Чарлз Лайель впервые опубликовал свою знаменитую книгу «Основы геологии». Книга, которая повлияла на идеи Чарльза Дарвина, успешно способствовала распространению актуализма. Эта теория утверждает, что медленные геологические процессы имели место на протяжении истории Земли и все еще происходят сегодня. Хотя Хаттона верил в актуализм, идея не была широко принята в то время.

Большую часть XIX века геология вращалась вокруг вопроса о точном возрасте Земли. Оценки варьировались от 100 000 до нескольких миллиардов лет. В начале XX века радиометрическое датирование позволило определить возраст Земли, оценка составила два миллиарда лет. Осознание этого огромного промежутка времени открыло двери для новых теорий о процессах, которые сформировали планету. Самым значительным достижением геологии в XX веке было развитие теории тектоники плит в 1960 году и уточнение возраста планеты. Теория тектоники плит возникла из двух отдельных геологических наблюдений: спрединга морского дна и континентального дрейфа. Теория революционизировала науки о Земле. В настоящее время известно, что возраст Земли составляет около 4,5 миллиардов лет.

В конце XIX века экономические потребности стран в отношении недр привели к изменению статуса науки. Появилось множество геологических служб, в частности геологическая служба США (1879) и геологический комитет России (1882). Была введена подготовка специалистов-геологов.

С целью пробудить интерес к геологии Организацией Объединённых Наций 2008 год провозглашён «Международным годом планеты Земля».

(Visited 51 times, 1 visits today)

ГЕОЛОГИЯ
наука о строении и истории развития Земли. Основные объекты исследований - горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом. Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего - медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры. Например, таким образом установлено, что территория вокруг Великих озер (США и Канада) и Ботнического залива (Швеция) в настоящее время поднимается, а восточное побережье Великобритании - опускается и затапливается. Однако значительно более содержательная информация об этих изменениях заключается в самих горных породах, представляющих собой не просто совокупность минералов, а страницы биографии Земли, которые можно прочесть, если владеть языком, которым они написаны. Такая летопись Земли весьма продолжительна. История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, - по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.
См. также РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ .
Геологические дисциплины. Геология выделилась в самостоятельную науку в 18 в. Современная геология подразделяется на ряд тесно взаимосвязанных отраслей. К ним относятся: геофизика, геохимия, историческая геология, минералогия, петрология, структурная геология, тектоника, стратиграфия, геоморфология, палеонтология, палеоэкология, геология полезных ископаемых. Существуют также несколько междисциплинарных областей исследований: морская геология, инженерная геология, гидрогеология, сельскохозяйственная геология и геология окружающей среды (экогеология). Геология тесно связана с такими науками, как гидродинамика, океанология, биология, физика и химия.
ПРИРОДА ЗЕМЛИ
Кора, мантия и ядро. Большая часть сведений о внутреннем строении Земли получена косвенно на основании интерпретации поведения сейсмических волн, которые регистрируются сейсмографами. В недрах Земли установлены два основных рубежа, на которых происходит резкая смена характера распространения сейсмических волн. Один из них, с сильной отражающей и преломляющей способностью, расположен на глубине 13-90 км от поверхности под материками и 4-13 км - под океанами. Он называется границей Мохоровичича, или поверхностью Мохо (М), и считается геохимической границей и зоной фазового перехода минералов под влиянием высокого давления. Эта граница разделяет земную кору и мантию. Второй рубеж находится на глубине 2900 км от поверхности Земли и соответствует границе мантии и ядра (рис. 1).

Температуры. На основании того, что из вулканов извергается расплавленная лава, сложилось представление, что недра Земли раскалены. По результатам температурных измерений в шахтах и нефтяных скважинах установлено, что с глубиной температура земной коры непрерывно повышается. Если бы такая тенденция сохранялась вплоть до ядра Земли, то его температура составила бы ок. 2925° С, т.е. значительно превышала бы точки плавления обычно встречающихся на земной поверхности пород. Однако на основании данных о распространении сейсмических волн считается, что большая часть недр Земли находится в твердом состоянии. Решение вопроса о температуре земных недр, тесно связанной с ранней историей Земли, имеет большое значение, но до сих пор он остается дискуссионным. Согласно одним теориям, Земля первоначально была раскаленной, а затем остыла, согласно другим - первоначально была холодной, а затем разогрелась под действием тепла, генерируемого в процессе распада радиоактивных элементов и высокого давления на глубине.
Земной магнетизм. Обычно считается, что магнитное поле создается внутри Земли, однако механизм его возникновения недостаточно ясен. Магнитное поле не может быть результатом постоянной намагниченности железного ядра Земли, поскольку температура уже на глубине нескольких десятков километров значительно ниже точки Кюри - температуры, при которой вещество утрачивает свои магнитные свойства. Кроме того, гипотеза постоянного магнита в фиксированном положении противоречит отмечаемым изменениям магнитного поля в настоящее время и в прошлом. Остаточная намагниченность сохраняется в осадочных и вулканических породах. Частички магнетита, осаждающиеся в спокойных водоемах, а также магнитные минералы в лавовых потоках при температуре ниже точки Кюри остывают и ориентируются по направлению силовых линий локального магнитного поля, существовавшего во время образования пород. Палеомагнитные исследования горных пород позволяют установить положение магнитных полюсов, которые существовали во время осадконакопления и оказывали воздействие на ориентировку магнитных частиц. Полученные результаты свидетельствуют о том, что либо магнитные полюса, либо участки земной коры со временем существенно меняли свое положение по отношению к оси вращения Земли (первое представляется маловероятным). Имеются также веские доказательства того, что материки перемещались относительно друг друга. Например, положения магнитного полюса, определенные по палеомагнитным данным для пород одного и того же возраста в Северной Америке, Европе и Австралии, пространственно не совпадают. Эти факты подтверждают гипотезу, согласно которой материки образовались из единого праматерика в результате его деления на отдельные части и последующего их раздвижения.
См. также ГЕОМАГНЕТИЗМ .
Гравитационное поле Земли. Гравитационными исследованиями установлено, что земная кора и мантия под воздействием дополнительных нагрузок прогибаются. Например, если земная кора всюду имела бы одинаковую мощность и плотность, то следовало бы ожидать, что в горах (где масса пород больше) действовала бы большая сила притяжения, чем на равнинах или в морях. Однако примерно с середины 18 в. было замечено, что гравитационное притяжение в горах и вблизи них меньше предполагаемого (если допустить, что горы представляют собой просто дополнительную массу земной коры). Этот факт объяснялся наличием "пустот", которые интерпретировались как разуплотнившиеся при нагревании породы или как соляное ядро гор. Такие объяснения оказались несостоятельными, и в 1850-х годах были предложены две новые гипотезы. В соответствии с первой гипотезой, земная кора состоит из блоков пород разных размеров и плотности, плавающих в более плотной среде. Основания всех блоков располагаются на одном уровне, а блоки, характеризующиеся низкой плотностью, должны быть большей высоты, чем блоки, имеющие высокую плотность. Горные сооружения принимались за блоки низкой плотности, а океанические бассейны - высокой (при одинаковой общей массе тех и других). Согласно второй гипотезе, плотность всех блоков одинакова и плавают они в более плотной среде, а различная высота поверхности объясняется их разной мощностью. Она известна как гипотеза горных корней, поскольку чем выше блок, тем глубже он погружен во вмещающую среду. В 1940-х годах были получены сейсмические данные, подтверждающие представление об утолщении земной коры в горных областях.
Изостазия. Всякий раз, когда на земную поверхность поступает дополнительная нагрузка (например, в результате осадконакопления, вулканизма или оледенения), земная кора прогибается и проседает, а когда эта нагрузка снимается (в результате денудации, таяния ледниковых покровов и пр.), земная кора поднимается. Этот компенсационный процесс, известный как изостазия, вероятно, реализуется посредством горизонтального переноса масс в пределах мантии, где может происходить периодическое расплавление материала. Установлено, что некоторые участки побережья Швеции и Финляндии за последние 9000 лет поднялись более чем на 240 м, главным образом вследствие таяния ледникового покрова. Поднятые побережья Великих озер в Северной Америке сформировались также в результате изостазии. Несмотря на действие таких компенсационных механизмов, крупные океанические впадины и некоторые дельты обнаруживают значительный дефицит массы, в то время как некоторые районы Индии и Кипр - существенный ее избыток.
Вулканизм. Происхождение лавы. В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества. Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, некоторые геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.
См. также ВУЛКАНЫ . Однако неясно, почему в одних районах из мантийного вещества образуются и андезиты, и базальты, а в других - только базальты. Если, как теперь полагают, мантия действительно является ультраосновной породой (т.е. обогащена железом и магнием), то лавы, произошедшие из мантии, должны иметь базальтовый, а не андезитовый состав, поскольку минералы андезитов отсутствуют в ультраосновных породах. Это противоречие разрешает теория тектоники плит, согласно которой океаническая кора поддвигается под островные дуги и на определенной глубине плавится. Эти расплавленные породы и изливаются в виде андезитовых лав.
Источники тепла. Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р.Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км3; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными; другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.
Геохимия и состав Земли. Определение химического состава Земли является трудной задачей, поскольку ядро, мантия и большая часть коры недоступны для непосредственного опробования и наблюдений и делать выводы приходится на основе интерпретации косвенных данных и аналогий.
Земля как гигантский метеорит. Предполагают, что метеориты представляют собой обломки ранее существовавших планет, по своему составу и строению имевших сходство с Землей. Существует несколько типов метеоритов. Наиболее известны и довольно часто встречаются железные метеориты, состоящие из металлического железа и железо-никелевых сплавов, которые, как полагают, составляли ядра существовавших планет и по аналогии должны быть идентичны земному ядру по плотности, составу и магнитным свойствам. Второй тип - каменные метеориты, состоящие преимущественно из железо-магнезиальных силикатных минералов. Они более распространены по сравнению с железными метеоритами и по своей плотности соответствуют породам, слагающим мантию. По составу каменные метеориты очень близки к ультраосновным породам Земли. Третий тип - смешанные метеориты, имеющие в своем составе металлы и силикаты, что указывает на их генезис из переходного (от мантии к ядру) слоя ранее существовавшей планеты.
Плотность Земли. Средняя плотность Земли в 5,5 раз выше плотности воды, в 5 раз выше плотности Венеры и в 3,9 раза - Марса. Согласно оценкам, увеличение плотности с глубиной, которое хорошо согласуется с общей массой Земли, моментом инерции, сейсмическими свойствами и сжимаемостью, распределяется следующим образом. Средняя плотность земной коры (по крайней мере, в ее верхней части до глубины 32 км) составляет 3,32 г/см3, ниже поверхности Мохоровичича она непрерывно возрастает (эта закономерность несколько нарушается на уровнях 415 и 988 км). На глубине 2900 км проходит граница между мантией и внешним ядром, где прослеживается резкий скачок плотности от 5,68 до 9,57 г/см3. С этой отметки и до границы между внешним и внутренним ядром на глубине 5080 км плотность продолжает непрерывно увеличиваться (составляя 11,54 г/см3 на глубине 4830 км). Плотность внутреннего ядра оценивается от 14 до 17 г/см3.
Земля как гигантская доменная печь. Некоторые геологи полагают, что если Земля некогда находилась в расплавленном состоянии, то вполне вероятно, что этот расплавленный материал разделялся на слои разного состава подобно тому, как это происходит в доменной печи, когда на дне скапливается металл, выше - сульфиды, а еще выше - силикаты. Возможно, недра Земли делятся в такой же последовательности на металлическое ядро и сульфидную и силикатную оболочки. Однако никаких признаков сульфидного слоя не было обнаружено.
Состав земной коры. Большая часть земной коры не доступна для изучения, потому что она перекрыта более молодыми осадочными породами, скрыта водами морей и океанов и даже если где-то выходит на поверхность, отбор образцов может быть выполнен из относительно небольших толщ. Более того, разнообразие горных пород и минералов и разная степень их участия в строении Земли затрудняют или делают невозможным получение репрезентативных проб. Любые количественные показатели или осредненные данные о химическом и минералогическом составе земной коры представляют грубое приближение к истинной характеристике. С большей или меньшей степенью достоверности общее представление о химическом составе земной коры было составлено на основании анализа более 5000 проб изверженных (магматических) пород. Установлено, что на 99% она состоит из 12 элементов. Их участие в весовых процентах распределяется следующим образом: кислород (46,6), кремний (27,7), алюминий (8,1), железо (5,0), кальций (3,6), натрий (2,8), магний (2,6), титан (2,1), марганец (0,4), фосфор (0,1), сера и углерод (вместе менее 0,1). Очевидно, что в земной коре преобладает кислород, поэтому 10 наиболее распространенных металлов присутствуют в форме оксидов. Однако обычно минералы, слагающие породы, представлены не простыми, а сложными оксидами, в состав которых входят несколько металлов. Поскольку одним из самых распространенных элементов на Земле является кремний, многие минералы представляют собой разнообразные сложные силикаты. Сочетание минералов в разных количественных пропорциях формирует многообразие горных пород.
Химический состав атмосферы. Современная атмосфера представляет собой результат медленной и продолжительной утраты в ходе вулканической деятельности и других процессов первоначальной атмосферы Земли. Примерно 3,1-2,7 млрд. лет назад с началом выделения больших количеств углекислого газа и водяных паров появились условия для жизнедеятельности первых растений, осуществляющих процесс фотосинтеза. Большие количества кислорода, выделявшиеся в атмосферу растениями, сначала расходовались на окисление металлов, о чем свидетельствует широкое распространение на земном шаре докембрийских железных руд. 1,6 млрд. лет назад содержание свободного кислорода в атмосфере достигло примерно 1% его современного количества, что позволило зародиться примитивным животным организмам. По-видимому, первозданная атмосфера имела восстановительный характер, тогда как современная, вторичная, атмосфера характеризуется окислительными свойствами. Постепенно ее химический состав менялся благодаря продолжающейся вулканической деятельности и эволюции органического мира.
Химический состав океанов. Предполагают, что первоначально на Земле вода отсутствовала. По всей вероятности, современные воды на поверхности Земли имеют вторичное происхождение, т.е. высвободились в виде пара из минералов земной коры и мантии в результате вулканической деятельности, а не были образованы путем соединения свободных молекул кислорода и водорода. Если бы морская вода постепенно накапливалась, то объем Мирового океана должен был бы непрерывно увеличиваться, однако прямые геологические доказательства этого обстоятельства отсутствуют; это означает, что океаны существовали на протяжении всей геологической истории Земли. Изменение химического состава океанических вод происходило постепенно.
Сиаль и сима. Существует разница между породами коры, которые подстилают континенты, и породами, залегающими под дном океанов. Состав континентальной коры соответствует гранодиориту, т.е. породе, состоящей из калиевого и натриевого полевого шпата, кварца и небольших количеств железо-магнезиальных минералов. Океаническая кора соответствует базальтам, состоящим из кальциевого полевого шпата, оливина и пироксена. Породы континентальной коры характеризуются светлой окраской, низкой плотностью и обычно кислым составом, часто их называют сиаль (по преобладанию Si и Al). Породы океанической коры отличаются темной окраской, высокой плотностью и основным составом, их называют сима (по преобладанию Si и Mg). Считается, что породы мантии имеют ультраосновной состав и состоят из оливина и пироксена. В современной российской научной литературе термины "сиаль" и "сима" не используются, т.к. считаются устаревшими.
ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ
Геологические процессы подразделяются на экзогенные (разрушительные и аккумулятивные) и эндогенные (тектонические).
РАЗРУШИТЕЛЬНЫЕ ПРОЦЕССЫ
Денудация. Действие водотоков, ветра, ледников, морских волн, морозного выветривания и химического растворения приводят к разрушению и снижению поверхности материков (рис. 2). Продукты разрушения под действием гравитационных сил сносятся в океанические впадины, где происходит их накопление. Таким образом происходит усреднение состава и плотности пород, слагающих материки и котловины океанов, и уменьшение амплитуды рельефа Земли.



Ежегодно 32,5 млрд. т обломочного материала и 4,85 млрд. т растворенных солей выносится с материков и отлагается в морях и океанах, в результате чего вытесняется примерно 13,5 км3 морской воды. Если бы такие темпы денудации сохранились и в будущем, материки (объем надводной части которых 126,6 млн. км3) через 9 млн. лет превратились бы в почти плоские равнины - пенеплены. Такая пенепленизация (выравнивание) рельефа возможна лишь теоретически. В действительности изостазические поднятия компенсируют потери за счет денудации, а некоторые породы настолько прочны, что практически не поддаются разрушению. Континентальные отложения перераспределяются в результате совместного действия выветривания (разрушения пород), денудации (механического сноса пород под воздействием текучих вод, ледников, ветра и волновых процессов) и аккумуляции (отложения рыхлого материала и образования новых пород). Все эти процессы действуют лишь до определенного уровня (обычно уровня моря), который рассматривается как базис эрозии. При транспортировке рыхлые осадки сортируются по размеру, форме и плотности. В результате кварц, содержание которого в исходной породе может составлять всего несколько процентов, образует однородную толщу кварцевых песков. Аналогичным образом частицы золота и некоторых других тяжелых минералов, содержащих, например, олово и титан, концентрируются в руслах водотоков или на отмелях и образуют россыпные месторождения, а тонкозернистый материал отлагается в виде илов и затем превращается в глинистые сланцы. Такие компоненты, как, например, магний, натрий, кальций и калий, растворяются и выносятся поверхностными и грунтовыми водами, а затем осаждаются в пещерах и других полостях или поступают в морские воды.
Стадии развития эрозионного рельефа. Рельеф служит показателем стадии выравнивания (или пенепленизации) материков. В горах и районах, испытавших интенсивное поднятие, эрозионные процессы протекают наиболее активно. Такие районы характеризуются быстрым врезанием речных долин и увеличением их длины в верхнем течении, а ландшафт соответствует молодой, или юной, стадии эрозии. В других районах, где амплитуда высот невелика и в основном прекратилась эрозия, крупные реки преимущественно переносят влекомые и взвешенные наносы. Такой рельеф присущ зрелой стадии эрозии. На участках с незначительными амплитудами высот, где поверхность суши ненамного превышает уровень моря, преобладают аккумулятивные процессы. Там река обычно течет несколько выше общего уровня низкой равнины в естественном возвышении, сложенном осадочным материалом, и образует в приустьевой зоне дельту. Это самый древний эрозионный рельеф. Однако не все районы находятся на одной и той же стадии развития эрозии и имеют одинаковый облик. Формы рельефа весьма различаются в зависимости от климатических и погодных условий, состава и строения местных пород и характера эрозионного процесса (рис. 3, 4).















Перерывы эрозионных циклов. Отмеченная последовательность эрозионных процессов справедлива в отношении материков и океанических бассейнов, находящихся в статических условиях, однако на самом деле они подвержены многим динамическим процессам. Эрозионный цикл может быть прерван под влиянием изменений уровня моря (например, в связи с таянием ледниковых покровов) и высоты материков (например, в результате горообразования, разломной тектоники и вулканической деятельности). В Иллинойсе (США) морены перекрыли зрелый доледниковый рельеф, придав ему типичный молодой облик. В Большом каньоне Колорадо перерыв эрозионного цикла был обусловлен поднятием суши до отметки 2400 м. По мере поднятия территории р.Колорадо постепенно врезалась в свою пойму и оказалась ограниченной бортами долины. В результате этого перерыва образовались наложенные меандры, свойственные древним долинам рек, существующих в условиях молодого рельефа (рис. 5). В пределах плато Колорадо меандры врезаны на глубину 1200 м. Глубокие меандры р.Саскуэханна, которые прорезают горы Аппалачи, также свидетельствуют о том, что этот район некогда представлял собой низменность, которую пересекала "дряхлая" река.





АККУМУЛЯТИВНЫЕ ПРОЦЕССЫ
Осадконакопление - один из важнейших геологических процессов, в результате которого образуются новые породы. Материал, снесенный с суши, в конечном итоге накапливается в морях и океанах, где формируются толщи песка, алевритов и глины. Обычно алевриты и глинистые отложения осаждаются на морском дне дальше от берега. При последующем поднятии этих районов они преобразуются в глинистые сланцы. Пески отлагаются преимущественно на пляжах и в конце концов преобразуются в песчаники. Если продукты разрушения не подвергаются сортировке, то со временем они превращаются в конгломераты. Химические соединения, переносимые в растворах, пополняют запасы веществ, необходимых для жизнедеятельности морских растений и животных. Например, кальций используется для построения известковых раковин и оболочек, а вместе с фосфором - для построения костей и зубов животных; железо принимает участие в кроветворении у рыб и других животных, а кобальт является компонентом витамина В12. Когда животные умирают, их раковины и скелеты, состоящие из карбоната кальция, оседают на морском дне, а при последующем поднятии территории обнажаются в виде толщ известняка. Кроме того, химические вещества могут непосредственно осаждаться при испарении морской воды. Именно таким способом образуются месторождения поваренной соли. Если органические вещества накапливаются в континентальных условиях, формируются залежи каменного угля, а в морских - образуется нефть. Большей частью такого рода осадконакопление происходит на материковых окраинах и влечет за собой увеличение их площадей за счет наращивания дельт, шельфов и рифов. Именно в этих условиях формируются биогенные карбонатные осадки. Поскольку основная часть снесенного материала оседает как раз в полосе прибрежного мелководья, эта зона при небольшом понижении уровня моря может оказаться в субаэральных условиях. Лишь незначительная часть обломочного терригенного материала выносится далеко за пределы шельфа (рис. 6).



ТЕКТОНИКА
Давно установлено, что горы формируются в результате образования складок и разломов и тектонических поднятий осадочных толщ, которые накапливались на дне моря. Кроме того, имеется много доказательств, что районы наиболее интенсивных тектонических нарушений приурочены к прибрежным зонам морей, где мощность осадков наибольшая. Горообразование (орогенез) - один из важнейших процессов формирования рельефа Земли, в результате которого осадочные толщи, снесенные с материков, вновь подвергаются тектоническим поднятиям. Наблюдения в современных горных районах свидетельствуют о том, что в развитии рельефа можно выделить несколько четких этапов.
Образование геосинклиналей. Предполагают, что горообразование начинается с накопления мощных осадочных толщ в геосинклиналях - крупных вытянутых впадинах земной коры. Большинство из них испытывало медленное длительное погружение (в течение 50-100 млн. лет) и заполнение осадками мощностью иногда до 9 км. Установлено, что масштабы и темпы этих процессов сильно различались в пределах одной впадины и даже имели разную направленность: в то время как одна ее часть активно погружалась, другая находилась в относительно стабильных условиях и там не накапливались осадки. В образовании геосинклиналей и осадконакоплении прослеживается определенная цикличность: трансгрессии морей регулярно чередовались с регрессиями. Некоторые горные страны состоят из внутренних хребтов, сложенных складчатыми осадочными толщами, и параллельных им внешних хребтов, сложенных преимущественно вулканическими породами. Не исключено, что эти хребты формировались в разных геосинклинальных впадинах, но были взаимосвязаны. Впадины с осадочными породами называют миогеосинклиналями, а с вулканическими - эвгеосинклиналями. Взаимное положение этих двух типов было постоянным: эвгеосинклинали были обращены к морю, а миогеосинклинали располагались между эвгеосинклиналями и сушей. Обычно процессы горообразования сначала охватывали эвгеосинклинали, а затем - миогеосинклинали. Береговые хребты Вашингтона и Орегона и горы Сьерра-Невада в Калифорнии соответствовали эвгеосинклинальной зоне. Такой же генезис имеют Аппалачи, горы Новой Англии (в т.ч. Уайт-Маунтинс) и Пидмонт. Напротив, с миогеосиклиналями были связаны Скалистые горы в пределах Монтаны, Вайоминга и Колорадо, а также зона Долин и Хребтов в Пенсильвании и Теннеси.
Преобразование геосинклиналей. На определенных стадиях развития в геосинклиналях происходит образование складок и разломов, а заполняющие осадки метаморфизуются под воздействием высоких температур и давлений. Проявляются процессы сжатия, направленного под прямым углом к оси впадин, что сопровождается деформациями осадочных толщ.





Современные геосинклинали - это впадины вдоль островов Ява и Суматра, желобов Тонга - Кермадек, Пуэрто-Рико и др. Возможно, их дальнейшее прогибание тоже приведет к образованию гор. По мнению многих геологов, побережье Мексиканского залива в пределах США тоже представляет собой современную геосинклиналь, хотя, судя по данным бурения, признаки горообразования там не выражены. Активные проявления современной тектоники и горообразования наиболее четко наблюдаются в молодых горных странах - Альпах, Андах, Гималаях и Скалистых горах.
Тектонические поднятия. На заключительных стадиях развития геосинклиналей, когда горообразование завершается, происходит интенсивное общее поднятие материков; в пределах горных стран на этой стадии рельефообразования происходят дизъюнктивные дислокации (смещение отдельных блоков горных пород по линиям разломов).
ГЕОЛОГИЧЕСКОЕ ВРЕМЯ
Стратиграфическая шкала. Стандартная шкала геологического времени (или геологическая колонка) - результат систематического изучения осадочных пород в разных районах земного шара. Поскольку большинство ранних работ проводилось в Европе, стратиграфическая последовательность отложений этого региона была принята в качестве эталона и для других районов. Однако в силу различных причин эта шкала имеет недостатки и пробелы, поэтому она постоянно уточняется. Шкала очень подробна для более молодых геологических периодов, но ее детальность существенно снижается для более древних. Это неизбежно, поскольку геологическая летопись наиболее полна для событий недавнего прошлого и становится более фрагментарной с увеличением возраста отложений. Стратиграфическая шкала основана на учете ископаемых организмов, которые служат единственным надежным критерием для межрегиональных корреляций (особенно дальних). Установлено, что некоторые ископаемые соответствуют строго определенному времени и поэтому считаются руководящими. Породы, содержащие эти руководящие формы и их комплексы, занимают строго определенное стратиграфическое положение. Значительно труднее проводить корреляции для палеонтологически немых пород, не содержащих ископаемых организмов. Поскольку хорошо сохранившиеся раковины встречаются только начиная с кембрийского периода (примерно 570 млн. лет назад), докембрийское время, охватывающее ок. 85% геологической истории, нельзя изучить и подразделить столь же детально, как более молодые эпохи. Для межрегиональных корреляций палеонтологически немых пород используются геохимические методы датирования. В случае необходимости в стандартную стратиграфическую шкалу вводились изменения, отражающие региональную специфику. Например, в Европе выделяется каменноугольный период, а в США ему соответствуют два - миссисипский и пенсильванский. Повсеместно возникают трудности при корреляции местных стратиграфических схем с международной геохронологической шкалой. Международная комиссия по стратиграфии помогает решать эти проблемы и устанавливает нормативы для стратиграфической номенклатуры. Она настоятельно рекомендует использовать при геологической съемке местные стратиграфические подразделения, а для сравнения сопоставлять их с международной геохронологической шкалой. Некоторые ископаемые имеют очень широкое, почти глобальное распространение, а другие - узко региональное. Эры - самые крупные подразделения истории Земли. Каждая из них объединяет несколько периодов, характеризующихся развитием определенных классов древних организмов. Массовое вымирание различных групп организмов происходило в конце каждой эры. Например, трилобиты исчезли в конце палеозоя, а динозавры - в конце мезозоя. Причины этих катастроф еще не выяснены. Это могли быть критические стадии генетической эволюции, пики космического излучения, выбросы вулканических газов и пепла, а также очень резкие изменения климата. Имеются доводы в поддержку каждой из этих гипотез. Однако постепенное исчезновение большого числа семейств и классов животных и растений к концу каждой эры и появление новых с началом следующей эры все еще остается одной из загадок геологии. Не увенчались успехом попытки связать массовую гибель животных на завершающих этапах палеозоя и мезозоя с глобальными циклами горообразования.
Геохронология и шкала абсолютного возраста. Стратиграфическая шкала отражает лишь последовательность напластования пород и потому может использоваться только для обозначения относительного возраста различных слоев (рис. 9). Возможность установления абсолютного возраста пород появилась после открытия радиоактивности. До этого абсолютный возраст пытались оценить другими методами, например, путем анализа содержания солей в морской воде. При допущении, что оно соответствует твердому стоку рек земного шара, может быть измерен минимальный возраст морей. На основании предположения, что изначально океаническая вода не содержала примесей солей, и учета темпов их поступления возраст морей оценивался в широких пределах - от 20 млн. до 200 млн. лет. Кельвин оценил возраст слагающих Землю пород в 100 млн. лет, поскольку, по его мнению, столько времени понадобилось на то, чтобы изначально расплавленная Земля остыла до нынешней температуры ее поверхности.



Если не считать этих попыток, первые геологи довольствовались определением относительного возраста пород и геологических событий. Без всяких объяснений допускалось, что прошло довольно много времени с момента возникновения Земли до формирования различных типов отложений в результате процессов, которые действуют и поныне. И лишь когда ученые стали измерять скорости радиоактивного распада, у геологов появились "часы" для определения абсолютного и относительного возраста пород, содержащих радиоактивные элементы. Темпы радиоактивного распада некоторых элементов незначительны. Это позволяет определять возраст древних событий путем измерения содержания таких элементов и продуктов их распада в конкретном образце. Поскольку скорость радиоактивного распада не зависит от параметров окружающей среды, можно определять возраст пород, находящихся в любых геологических условиях. Наиболее часто применяются уран-свинцовый и калий-аргоновый методы. Уран-свинцовый метод позволяет произвести точное датирование на основе замеров концентрации радиоизотопов тория (232Th) и урана (235U и 238U). При радиоактивном распаде образуются изотопы свинца (208Pb, 207Pb и 206Pb). Однако породы, содержащие эти элементы в достаточных количествах, встречаются довольно редко. Калий-аргоновый метод базируется на весьма медленном радиоактивном превращении изотопа 40K в 40Ar, что позволяет датировать события, имеющие возраст в несколько миллиардов лет, по соотношению в породах этих изотопов. Значительное преимущество калий-аргонового метода заключается в том, что калий, весьма распространенный элемент, присутствует в минералах, образованных во всех геологических обстановках - вулканической, метаморфической и осадочной. Однако возникающий в результате радиоактивного распада инертный газ аргон химически не связан и происходит его утечка. Следовательно, для датирования могут быть надежно использованы только те минералы, в которых он хорошо удерживается. Несмотря на этот недостаток, калий-аргоновый метод используется весьма широко. Абсолютный возраст самых древних пород на планете составляет 3,5 млрд. лет. В земной коре всех материков представлены очень древние породы, поэтому вопрос, какой из них самый древний, даже не возникает. Возраст метеоритов, упавших на Землю, по определениям калий-аргоновым и уран-свинцовым методами, составляет примерно 4,5 млрд. лет. По оценкам геофизиков, основывающимся на данных уран-свинцового метода, Земля тоже имеет возраст ок. 4,5 млрд. лет. Если эти оценки верны, то в геологической летописи имеется пробел в 1 млрд. лет, соответствующий важному раннему этапу эволюции Земли. Возможно, самые ранние свидетельства были уничтожены или стерты каким-либо образом, когда Земля находилась в расплавленном состоянии. Вполне вероятно также, что древнейшие породы Земли были денудированы или перекристаллизовались за многие миллионы лет.
ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ
Архейская эра. Самые древние породы, обнажающиеся на поверхности материков, образовались в архейскую эру. Распознавание этих пород затруднено, поскольку их выходы рассредоточены и в большинстве случаев перекрыты мощными толщами более молодых пород. Там, где эти породы обнажаются, они настолько метаморфизованы, что зачастую нельзя восстановить их исходный характер. Во время многочисленных продолжительных этапов денудации были разрушены мощные толщи этих пород, а сохранившиеся содержат очень мало ископаемых организмов и поэтому их корреляция затруднительна или вообще невозможна. Интересно отметить, что самые древние известные архейские породы, вероятно, представляют собой сильно метаморфизованные осадочные породы, а более древние породы, перекрытые ими, были расплавлены и разрушены в результате многочисленных магматических интрузий. Поэтому до сих пор не обнаружены следы первичной земной коры. В Северной Америке имеются два больших ареала выходов на поверхность архейских пород. Первый из них - Канадский щит - расположен в центральной Канаде по обе стороны Гудзонова залива. Хотя местами архейские породы перекрыты более молодыми, на большей части территории Канадского щита они слагают дневную поверхность. Древнейшие известные в этом районе породы представлены мраморами, аспидными и кристаллическими сланцами, переслаивающимися с лавами. Первоначально здесь были отложены известняки и глинистые сланцы, впоследствии запечатанные лавами. Затем эти породы испытали воздействие мощных тектонических движений, которые сопровождались крупными гранитными интрузиями. В конечном итоге толщи осадочных пород подверглись сильному метаморфизму. После длительного периода денудации эти сильно метаморфизованные породы местами были выведены на поверхность, но общий фон составляют граниты. Выходы архейских пород имеются также в Скалистых горах, где слагают гребни многих хребтов и отдельные вершины, например Пайкс-Пик. Более молодые породы там разрушены денудацией. В Европе архейские породы обнажаются на территории Балтийского щита в пределах Норвегии, Швеции, Финляндии и России. Они представлены гранитами и сильно метаморфизованными осадочными породами. Такие же выходы архейских пород имеются на юге и юго-востоке Сибири, в Китае, западной Австралии, Африке и на северо-востоке Южной Америки. Древнейшие следы жизнедеятельности бактерий и колоний одноклеточных сине-зеленых водорослей Collenia были обнаружены в архейских породах южной Африки (Зимбабве) и провинции Онтарио (Канада).
Протерозойская эра. В начале протерозоя после длительного периода денудации суша была в значительной степени разрушена, отдельные части материков испытали погружение и были затоплены мелководными морями, а некоторые низменные котловины начали заполняться континентальными отложениями. В Северной Америке самые значительные выходы протерозойских пород имеются в четырех районах. Первый из них приурочен к южной части Канадского щита, где мощные толщи глинистых сланцев и песчаников рассматриваемого возраста обнажаются вокруг оз. Верхнего и северо-восточнее оз. Гурон. Эти породы имеют как морское, так и континентальное происхождение. Их распределение указывает на то, что положение мелководных морей на протяжении протерозоя значительно менялось. Во многих местах морские и континентальные осадки переслаиваются с мощными лавовыми толщами. По окончании осадконакопления происходили тектонические движения земной коры, протерозойские породы претерпевали складкообразование и формировались крупные горные системы. В предгорных районах к востоку от Аппалачей имеются многочисленные выходы протерозойских пород. Первоначально они отлагались в виде пластов известняков и глинистых сланцев, а затем во время орогенеза (горообразования) метаморфизовались и превратились в мрамора, аспидные и кристаллические сланцы. В районе Большого каньона мощная толща протерозойских песчаников, глинистых сланцев и известняков несогласно перекрывает архейские породы. В северной части Скалистых гор была отложена толща протерозойских известняков мощностью ок. 4600 м. Хотя протерозойские образования в этих районах испытали воздействие тектонических движений и были смяты в складки и разбиты разломами, эти подвижки были недостаточно интенсивными и не могли привести к метаморфизации пород. Поэтому там сохранились исходные осадочные текстуры. В Европе значительные выходы протерозойских пород имеются в пределах Балтийского щита. Они представлены сильно метаморфизованными мраморами и аспидными сланцами. На северо-западе Шотландии мощная толща протерозойских песчаников перекрывает архейские граниты и кристаллические сланцы. Обширные выходы протерозойских пород встречаются на западе Китая, в центральной Австралии, южной Африке и центральной части Южной Америки. В Австралии указанные породы представлены мощной толщей неметаморфизованных песчаников и глинистых сланцев, а в восточной Бразилии и южной Венесуэле - сильно метаморфизованными аспидными и кристаллическими сланцами. Ископаемые сине-зеленые водоросли Collenia весьма широко распространены на всех материках в неметаморфизованных известняках протерозойского возраста, где также обнаружены немногочисленные обломки раковин примитивных моллюсков. Однако остатки животных очень редки, и это свидетельствует о том, что большинство организмов отличалось примитивным строением и еще не имело твердых оболочек, которые сохраняются в ископаемом состоянии. Хотя следы ледниковых периодов фиксируются для ранних этапов истории Земли, обширное оледенение, имевшее почти глобальное распространение, отмечается только в самом конце протерозоя.
Палеозойская эра. После того, как суша пережила длительный период денудации в конце протерозоя, некоторые ее территории испытали прогибание и были затоплены мелководными морями. В результате денудации возвышенных участков осадочный материал сносился водными потоками в геосинклинали, где накопились толщи палеозойских осадочных пород мощностью более 12 км. В Северной Америке в начале палеозойской эры образовались две крупные геосинклинали. Одна из них, называемая Аппалачской, протянулась от северной части Атлантического океана через юго-восточную Канаду и далее на юг к Мексиканскому заливу вдоль оси современных Аппалачей. Другая геосинклиналь соединяла Северный Ледовитый океан с Тихим, проходя несколько восточнее Аляски на юг через восточную часть Британской Колумбии и западную часть Альберты, далее через восточную Неваду, западную Юту и южную Калифорнию. Таким образом Северная Америка была разделена на три части. В отдельные периоды палеозоя ее центральные районы отчасти затоплялись и обе геосинклинали соединялись мелководными морями. В другие периоды в результате изостатических поднятий суши или колебаний уровня Мирового океана происходили морские регрессии, и тогда в геосинклиналях откладывался терригенный материал, смытый из сопредельных возвышенных районов. В палеозое сходные условия существовали и на других материках. В Европе огромные моря периодически затопляли Британские о-ва, территории Норвегии, Германии, Франции, Бельгии и Испании, а также обширную область Восточно-Европейской равнины от Балтийского моря до Уральских гор. Крупные выходы палеозойских пород имеются также в Сибири, Китае и северной Индии. Они являются коренными породами в большинстве районов восточной Австралии, северной Африки, а также в северных и центральных районах Южной Америки. Палеозойская эра делится на шесть периодов неодинаковой продолжительности, чередующихся с кратковременными этапами изостатических поднятий или морских регрессий, во время которых в пределах материков осадкообразование не происходило (рис. 9, 10).







Кембрийский период - самый ранний период палеозойской эры, названный по латинскому названию Уэльса (Камбрия), где впервые были изучены породы этого возраста. В Северной Америке в кембрии обе геосинклинали были затоплены, а во второй половине кембрия центральная часть материка занимала столь низкое положение, что оба прогиба соединялись мелководным морем и там накапливались слои песчаников, глинистых сланцев и известняков. В Европе и Азии происходила крупная морская трансгрессия. Эти части света были в значительной степени затоплены. Исключение составляли три крупных обособленных массива суши (Балтийский щит, Аравийский п-ов и южная Индия) и ряд небольших изолированных участков суши в южной Европе и южной Азии. Менее крупные морские трансгрессии происходили в Австралии и центральной части Южной Америки. Кембрий отличался довольно спокойными тектоническими обстановками. В отложениях этого периода сохранились первые многочисленные ископаемые, свидетельствующие о развитии жизни на Земле. Хотя наземные растения или животные не отмечены, мелководные эпиконтинентальные моря и затопленные геосинклинали изобиловали многочисленными беспозвоночными животными и водными растениями. Наиболее необычные и интересные животные того времени - трилобиты (рис. 11), класс вымерших примитивных членистоногих, были широко распространены в кембрийских морях. Их известково-хитиновые панцири обнаружены в породах этого возраста на всех материках. Кроме того, существовало много типов плеченогих (брахиопод), моллюсков и других беспозвоночных. Таким образом, в кембрийских морях присутствовали все основные формы беспозвоночных организмов (за исключением кораллов, мшанок и пелеципод).



В конце кембрийского периода большая часть суши испытала поднятие и произошла кратковременная морская регрессия. Ордовикский период - второй период палеозойской эры (называющийся по имени кельтского племени ордовиков, населявшего территорию Уэльса). В этот период материки снова испытали прогибание, в результате чего геосинклинали и низменные котловины превратились в мелководные моря. В конце ордовика ок. 70% территории Северной Америки было затоплено морем, в котором отложились мощные толщи известняков и глинистых сланцев. Морем были покрыты также значительные территории Европы и Азии, частично - Австралия и центральные районы Южной Америки. Все кембрийские беспозвоночные продолжали развиваться и в ордовике. Кроме того, появились кораллы, пелециподы (двустворчатые моллюски), мшанки и первые позвоночные. В Колорадо в ордовикских песчаниках обнаружены фрагменты самых примитивных позвоночных - бесчелюстных (остракодерм), у которых отсутствовали настоящие челюсти и парные конечности, а передняя часть тела была покрыта костными пластинками, образующими защитный панцирь. На основе палеомагнитного изучения пород установлено, что на протяжении большей части палеозоя Северная Америка располагалась в экваториальной зоне. Ископаемые организмы и широко распространенные известняки этого времени свидетельствуют о господстве в ордовике теплых мелководных морей. Австралия располагалась близ Южного полюса, а северо-западная Африка - в районе самого полюса, что подтверждается запечатлевшимися в ордовикских породах Африки признаками широкого распространения оледенения. В конце ордовикского периода в результате тектонических движений происходили поднятие материков и морская регрессия. Местами коренные кембрийские и ордовикские породы испытали процесс складкообразования, который сопровождался ростом гор. Этот древнейший этап орогенеза носит название каледонской складчатости.
Силурийский период. Впервые породы этого периода были изучены также в Уэльсе (название периода происходит от кельтского племени силуров, населявшего этот регион). После тектонических поднятий, ознаменовавших окончание ордовикского периода, наступил денудационный этап, а затем в начале силура материки снова испытали прогибание, а моря затопили низменные районы. В Северной Америке в раннем силуре площадь морей существенно сократилась, однако в среднем силуре они заняли почти 60% ее территории. Сформировалась мощная толща морских известняков ниагарской формации, получившей свое название от Ниагарского водопада, порог которого она слагает. В позднем силуре площади морей сильно сократились. В полосе, простирающейся от современного штата Мичиган до центральной части штата Нью-Йорк, накапливались мощные соленосные пласты. В Европе и Азии силурийские моря были широко распространены и занимали почти те же территории, что и кембрийские моря. Незатопленными оставались те же изолированные массивы, что и в кембрии, а также значительные территории северного Китая и Восточной Сибири. В Европе мощные известняковые толщи накапливались по периферии южной оконечности Балтийского щита (в настоящее время они частично затоплены Балтийским морем). Небольшие моря были распространены в восточной Австралии, северной Африке и в центральных районах Южной Америки. В силурийских породах обнаружены в общем те же основные представители органического мира, что и в ордовикских. Наземные растения в силуре еще не появились. Среди беспозвоночных гораздо более обильными стали кораллы, в результате жизнедеятельности которых во многих районах сформировались массивные коралловые рифы. Трилобиты, столь характерные для кембрийских и ордовикских пород, утрачивают свое доминирующее значение: их становится меньше как в количественном, так и видовом отношениях. В конце силура появилось множество крупных водных членистоногих, называемых эвриптеридами, или ракоскорпионами. Силурийский период в Северной Америке завершился без крупных тектонических подвижек. Однако в Западной Европе в это время образовался пояс каледонид. Эта горная цепь простиралась на территории Норвегии, Шотландии и Ирландии. Орогенез происходил также в северной Сибири, в результате чего ее территория была так высоко поднята, что больше уже никогда не затоплялась. Девонский период назван по имени графства Девон в Англии, где впервые были изучены породы этого возраста. После денудационного перерыва отдельные районы материков снова испытали погружение и были затоплены мелководными морями. В северной Англии и частично в Шотландии молодые каледониды препятствовали проникновению моря. Однако их разрушение привело к накоплению мощных толщ терригенных песчаников в долинах предгорных рек. Эта формация древних красных песчаников известна хорошо сохранившимися ископаемыми рыбами. Южная Англия в это время была покрыта морем, в котором отлагались мощные толщи известняков. Значительные территории на севере Европы были тогда затоплены морями, в которых накапливались слои глинистых сланцев и известняков. При врезании Рейна в эти толщи в районе массива Эйфель образовались живописные утесы, которые поднимаются по берегам долины. Девонские моря покрывали многие районы европейской части России, южной Сибири и южного Китая. Обширный морской бассейн затопил центральную и западную Австралию. Эта территория не покрывалась морем с кембрийского периода. В Южной Америке морская трансгрессия распространилась на некоторые центральные и западные районы. Кроме того, существовал узкий субширотный прогиб в Амазонии. В Северной Америке очень широко распространены девонские породы. На протяжении большей части этого периода существовали два крупных геосинклинальных бассейна. В среднем девоне морская трансгрессия распространилась на территорию современной долины р. Миссисипи, где накопилась многослойная толща известняков. В верхнем девоне мощные горизонты сланцев и песчаников сформировались в восточных районах Северной Америки. Эти обломочные толщи соответствуют этапу горообразования, начавшемуся в конце среднего девона и продолжавшемуся до окончания этого периода. Горы простирались вдоль восточного крыла Аппалачской геосинклинали (от современных юго-восточных районов США до юго-восточной Канады). Этот регион был сильно поднят, его северная часть претерпела складкообразование, затем там произошли обширные гранитные интрузии. Этими гранитами сложены горы Уайт-Маунтинс в Нью-Гэмпшире, Стоун-Маунтин в Джорджии и ряд других горных сооружений. Верхнедевонские, т.н. Акадские, горы были переработаны денудационными процессами. В результате к западу от Аппалачской геосинклинали накопилась слоистая толща песчаников, мощность которых местами превышает 1500 м. Они широко представлены в районе гор Кэтскилл, откуда и пошло название песчаников Кэтскилл. В меньших масштабах горообразование в это же время проявилось в некоторых районах Западной Европы. Орогенез и тектонические поднятия земной поверхности послужили причиной морской регрессии в конце девонского периода. В девоне произошли некоторые важные события в эволюции жизни на Земле. Во многих районах земного шара были обнаружены первые бесспорные находки наземных растений. Так, например, в окрестностях Гилбоа (шт. Нью-Йорк) было найдено много видов папоротникообразных, включая гигантские древовидные. Среди беспозвоночных были широко распространены губки, кораллы, мшанки, брахиоподы и моллюски (рис. 12). Существовало несколько типов трилобитов, хотя их численность и видовое разнообразие значительно сократились по сравнению с силуром. Девон часто называют "веком рыб" благодаря пышному расцвету этого класса позвоночных. Хотя еще существовали примитивные бесчелюстные, преобладать стали более совершенные формы. Акулообразные рыбы достигали в длину 6 м. В это время появились двоякодышащие рыбы, у которых плавательный пузырь трансформировался в примитивные легкие, что позволяло им существовать какое-то время на суше, а также кистеперые и лучеперые. В верхнем девоне обнаружены первые следы наземных животных - крупных саламандроподобных земноводных, называемых стегоцефалами. Особенности скелета показывают, что они развились из двоякодышащих рыб путем дальнейшего усовершенствования легких и видоизменения плавников и превращения их в конечности.



Каменноугольный период. После некоторого перерыва материки снова испытали погружение и их низменные участки превратились в мелководные моря. Так начался каменноугольный период, получивший свое название по широкому распространению угольных залежей как в Европе, так и в Северной Америке. В Америке его ранний этап, характеризовавшийся морскими обстановками, раньше называли миссисипским по мощной толще известняков, сформировавшейся в пределах современной долины р. Миссисипи, а теперь его относят к нижнему отделу каменноугольного периода. В Европе на протяжении всего каменноугольного периода территории Англии, Бельгии и северной Франции были большей частью затоплены морем, в котором сформировались мощные горизонты известняков. Затоплялись также некоторые районы южной Европы и южной Азии, где отложились мощные слои глинистых сланцев и песчаников. Некоторые из этих горизонтов имеют континентальное происхождение и содержат много ископаемых остатков наземных растений, а также вмещают угленосные пласты. Поскольку нижнекаменноугольные формации мало представлены в Африке, Австралии и Южной Америке, можно предполагать, что эти территории находились преимущественно в субаэральных условиях. Кроме того, имеются свидетельства широкого распространения там материкового оледенения. В Северной Америке Аппалачскую геосинклиналь с севера ограничивали Акадские горы, а с юга, со стороны Мексиканского залива, в нее проникало Миссисипское море, которое заливало и долину Миссисипи. Небольшие морские бассейны занимали некоторые участки на западе материка. В районе долины Миссисипи накапливалась многослойная толща известняков и сланцев. Один из этих горизонтов, т.н. индианский известняк, или спергенит, является хорошим строительным материалом. Он использовался при сооружении многих правительственных зданий в Вашингтоне. В конце каменноугольного периода в Европе широко проявилось горообразование. Цепи гор простирались от южной Ирландии через южную Англию и северную Францию в южную Германию. Этот этап орогенеза называют герцинским, или варисцийским. В Северной Америке локальные поднятия происходили в конце миссисипского периода. Эти тектонические движения сопровождались морской регрессией, развитию которой способствовали также оледенения южных материков. В целом органический мир нижнекаменноугольного (или миссисипского) времени был таким же, как и в девоне. Однако, помимо большего разнообразия типов древовидных папоротников, флора пополнилась древовидными плаунами и каламитовыми (древовидными членистостебельными класса хвощей). Беспозвоночные в основном были представлены теми же формами, что и в девоне. В миссисипское время стали более обычными морские лилии - донные животные, по форме сходные с цветком. Среди ископаемых позвоночных многочисленны акулоподобные рыбы и стегоцефалы. В начале позднекаменноугольного времени (в Северной Америке - пенсильванского) условия на материках стали быстро меняться. Как следует из значительно более широкого распространения континентальных осадков, моря занимали меньшие пространства. Северо-западная Европа большую часть этого времени находилась в субаэральных условиях. Обширное эпиконтинентальное Уральское море широко распространилось в северной и центральной России, а крупная геосинклиналь простиралась через южную Европу и южную Азию (современные Альпы, Кавказ и Гималаи расположены вдоль ее оси). Этот прогиб, именующийся геосинклиналью, или морем, Тетис, существовал на протяжении ряда последующих геологических периодов. На территории Англии, Бельгии и Германии простирались низменности. Здесь в результате небольших колебательных движений земной коры происходило чередование морских и континентальных обстановок. Когда море отступало, формировались низменные заболоченные ландшафты с лесами из древовидных папоротников, древовидных плаунов и каламитовых. При наступании морей осадочные образования перекрывали леса, уплотняя древесные остатки, которые превращались в торф, а затем в уголь. В позднекаменноугольное время на материках Южного полушария распространилось покровное оледенение. В Южной Америке в результате морской трансгрессии, проникавшей с запада, была затоплена большая часть территории современных Боливии и Перу. В раннепенсильванское время в Северной Америке Аппалачская геосинклиналь замкнулась, утратила связь с Мировым океаном, и в восточных и центральных районах США накапливались терригенные песчаники. В середине и конце этого периода во внутренних районах Северной Америки (так же, как в Западной Европе) преобладали низменности. Здесь мелководные моря периодически уступали место болотам, в которых накапливались мощные торфяные залежи, впоследствии трансформировавшиеся в крупные угольные бассейны, которые простираются от Пенсильвании до восточного Канзаса. Некоторые западные районы Северной Америки заливались морем на протяжении большей части этого периода. Там отлагались слои известняков, сланцев и песчаников. Широкое распространение субаэральных обстановок в значительной мере способствовало эволюции наземных растений и животных. Гигантские леса из древовидных папоротников и плаунов покрывали обширные заболоченные низменности. Эти леса изобиловали насекомыми и паукообразными. Один из видов насекомых, самый крупный в геологической истории, был похож на современную стрекозу, но имел размах крыльев ок. 75 см. Значительно большего видового разнообразия достигли стегоцефалы. Некоторые превышали в длину 3 м. Только в Северной Америке в болотных отложениях пенсильванского времени было обнаружено более 90 видов этих гигантских земноводных, имевших сходство с саламандрами. В этих же породах были найдены остатки древнейших пресмыкающихся. Однако из-за фрагментарности находок трудно составить полное представление о морфологии этих животных. Вероятно, эти примитивные формы были похожи на аллигаторов.
Пермский период. Изменения природных условий, начавшиеся в позднекаменноугольное время, еще больше проявились в пермском периоде, завершившем палеозойскую эру. Его название происходит от Пермской области в России. В начале этого периода море занимало Уральскую геосинклиналь - прогиб, следовавший согласно простиранию современных Уральских гор. Мелководное море периодически покрывало некоторые районы Англии, северной Франции и южной Германии, где накапливались слоистые толщи морских и континентальных осадков - песчаников, известняков, глинистых сланцев и каменной соли. Море Тетис существовало на протяжении большей части периода, и в районе северной Индии и современных Гималаев образовалась мощная толща известняков. Пермские отложения большой мощности представлены в восточной и центральной Австралии и на островах Южной и Юго-Восточной Азии. Они широко распространены в Бразилии, Боливии и Аргентине, а также в южной Африке. Многие пермские формации в северной Индии, Австралии, Африке и Южной Америке имеют континентальное происхождение. Они представлены уплотненными ледниковыми отложениями, а также широко распространенными водно-ледниковыми песками. В Центральной и Южной Африке этими породами начинается мощная толща континентальных отложений, известная как серия кару. В Северной Америке пермские моря занимали меньшую площадь по сравнению с предыдущими периодами палеозоя. Главная трансгрессия распространялась из западной части Мексиканского залива на север через территорию Мексики и проникла в южные районы центральной части США. Центр этого эпиконтинентального моря располагался в пределах современного штата Нью-Мексико, где сформировалась мощная толща известняков серии кэпитен. Благодаря деятельности подземных вод эти известняки приобрели сотовую структуру, особенно ярко выраженную в знаменитых Карлсбадских пещерах (шт. Нью-Мексико, США). Восточнее, в Канзасе и Оклахоме, отложились прибрежные фации красных глинистых сланцев. В конце перми, когда площадь, занятая морем, значительно сократилась, сформировались мощные соленосные и гипсоносные толщи. В конце палеозойской эры, отчасти в каменноугольном периоде и отчасти - в пермском, во многих районах начался орогенез. Мощные толщи осадочных пород Аппалачской геосинклинали были смяты в складки и разбиты разломами. В результате образовались горы Аппалачи. Этот этап горообразования в Европе и Азии называют герцинским, или варисцийским, а в Северной Америке - аппалачским. Растительный мир пермского периода был такой же, как и во второй половине каменноугольного. Однако растения имели меньшие размеры и не были так многочисленны. Это указывает на то, что климат пермского периода стал холоднее и суше. Беспозвоночные животные перми были унаследованы от предыдущего периода. Большой скачок произошел в эволюции позвоночных (рис. 13). На всех материках континентальные отложения пермского возраста содержат многочисленные остатки пресмыкающихся, достигавших в длину 3 м. Все эти предки мезозойских динозавров отличались примитивным строением и внешне были похожи на ящериц или аллигаторов, но иногда имели необычные особенности, например, высокий парусообразный плавник, протягивающийся от шеи до хвоста вдоль спины, у диметродона. Все еще многочисленными были стегоцефалы.



В конце пермского периода горообразование, проявившееся во многих районах земного шара на фоне общего поднятия материков, привело к столь значительным изменениям окружающей среды, что начали вымирать многие характерные представители палеозойской фауны. Пермский период был заключительной стадией существования многих беспозвоночных, особенно трилобитов. Мезозойская эра, подразделяемая на три периода, отличалась от палеозойской преобладанием континентальных обстановок над морскими, а также составом флоры и фауны. Наземные растения, многие группы беспозвоночных и особенно позвоночные животные приспособились к новым обстановкам и претерпели существенные изменения. Триасовый период открывает мезозойскую эру. Его название происходит от греч. trias (троица) в связи с четким трехчленным строением толщи отложений этого периода в северной Германии. В основании толщи залегают красноцветные песчаники, в середине - известняки, а вверху - красноцветные песчаники и глинистые сланцы. На протяжении триаса значительные территории Европы и Азии были заняты озерами и мелководными морями. Эпиконтинентальное море покрывало Западную Европу, причем его береговая линия прослеживается на территории Англии. В этом морском бассейне и накапливались вышеупомянутые стратотипические осадки. Песчаники, залегающие в нижней и верхней частях толщи, отчасти имеют континентальное происхождение. Другой триасовый морской бассейн проникал на территорию северной России и распространялся к югу по Уральскому прогибу. Огромное море Тетис тогда покрывало примерно такую же территорию, как и в позднекаменноугольное и пермское время. В этом море накопилась мощная толща доломитовых известняков, которыми сложены Доломитовые Альпы северной Италии. На юге центральной Африки триасовый возраст имеет большая часть верхней толщи континентальной серии кару. Эти горизонты известны обилием ископаемых остатков пресмыкающихся. В конце триаса на территории Колумбии, Венесуэлы и Аргентины образовались покровы алевритов и песков континентального генезиса. Пресмыкающиеся, найденные в этих слоях, обнаруживают удивительное сходство с фауной серии кару в южной Африке. В Северной Америке триасовые породы не так широко распространены, как в Европе и Азии. Продукты разрушения Аппалачей - красноцветные континентальные пески и глины - накапливались во впадинах, расположенных восточнее этих гор и испытывавших погружение. Эти отложения, переслаивающиеся с горизонтами лавы и пластовыми интрузиями, разбиты разломами и имеют падение к востоку. В Ньюаркском бассейне в Нью-Джерси и долине р.Коннектикут им соответствуют коренные породы серии ньюарк. Мелководные моря занимали некоторые западные районы Северной Америки, где накапливались известняки и глинистые сланцы. Континентальные песчаники и глинистые сланцы триаса выходят по бортам Большого каньона (шт. Аризона). Органический мир в триасовом периоде был существенно иным, чем в пермском периоде. Для этого времени характерно обилие крупных хвойных деревьев, остатки которых часто встречаются в триасовых континентальных отложениях. Глинистые сланцы формации чинл на севере Аризоны насыщены окременелыми стволами деревьев. В результате выветривания сланцев они обнажились и теперь образуют каменный лес. Широкое развитие получили саговниковые (или цикадофиты), растения с тонкими или бочонковидными стволами и свисающими с макушки рассеченными, как у пальм, листьями. Некоторые виды саговниковых существуют и в современных тропических районах. Из беспозвоночных самыми распространенными были моллюски, среди которых преобладали аммониты (рис. 14), имевшие отдаленное сходство с современными наутилусами (или корабликами) и многокамерную раковину. Существовало много видов двустворчатых моллюсков. Значительный прогресс произошел в эволюции позвоночных. Хотя стегоцефалы были еще довольно обычны, преобладать стали пресмыкающиеся, среди которых появилось множество необычных групп (например, фитозавры, форма тела которых была, как у современных крокодилов, а челюсти узкие и длинные с острыми коническими зубами). В триасе впервые появились настоящие динозавры, эволюционно более развитые, чем их примитивные предки. Конечности у них были направлены вниз, а не в стороны (как у крокодилов), что позволяло им передвигаться подобно млекопитающим и поддерживать тело над землей. Динозавры передвигались на задних ногах, удерживая равновесие при помощи длинного хвоста (как кенгуру), и отличались небольшим ростом - от 30 см до 2,5 м. Некоторые пресмыкающиеся приспособились к жизни в морской среде, например ихтиозавры, туловище которых походило на акулье, а конечности трансформировались в нечто среднее между ластами и плавниками, и плезиозавры, туловище которых стало уплощенным, шея вытянулась, а конечности превратились в ласты. Обе эти группы животных стали более многочисленными в последующие этапы мезозойской эры.



Юрский период получил свое название от гор Юра (в северо-западной Швейцарии), сложенных многослойной толщей известняков, глинистых сланцев и песчаников. В юре произошла одна из крупнейших морских трансгрессий в Западной Европе. Огромное эпиконтинентальное море распространялось на большей части Англии, Франции, Германии и проникало в некоторые западные районы европейской России. В Германии известны многочисленные выходы верхнеюрских лагунных мелкозернистых известняков, в которых были обнаружены необычные ископаемые. В Баварии, в знаменитом местечке Золенхофен, найдены остатки крылатых пресмыкающихся и оба из известных видов первых птиц. Море Тетис простиралось от Атлантики через южную часть Пиренейского п-ова вдоль Средиземного моря и через Южную и Юго-Восточную Азию выходило к Тихому океану. Большая часть северной Азии в этот период располагалась выше уровня моря, хотя эпиконтинентальные моря с севера проникали в Сибирь. Континентальные отложения юрского возраста известны в южной Сибири и северном Китае. Небольшие эпиконтинентальные моря занимали ограниченные площади вдоль побережья западной Австралии. Во внутренних районах Австралии имеются выходы юрских континентальных отложений. Большая часть Африки в юрский период располагалась выше уровня моря. Исключение составляла ее северная окраина, заливавшаяся морем Тетис. В Южной Америке вытянутое узкое море заполняло геосинклиналь, размещавшуюся примерно на месте современных Анд. В Северной Америке юрские моря занимали весьма ограниченные территории на западе материка. Мощные толщи континентальных песчаников и кроющих глинистых сланцев накопились в районе плато Колорадо, особенно к северу и востоку от Большого каньона. Песчаники образовались из песков, слагавших пустынные дюнные ландшафты котловин. В результате процессов выветривания песчаники приобрели необычные формы (как, например, живописные остроконечные пики в национальном парке Зайон или национальный памятник Рейнбоу-Бридж, представляющий собой возвышающуюся на 94 м над дном каньона арку с пролетом 85 м; эти достопримечательности находятся в штате Юта). Отложения глинистых сланцев формации моррисон знамениты находками 69 видов ископаемых динозавров. Тонкодисперсные осадки в этом районе, вероятно, накапливались в условиях заболоченной низины. Растительный мир юрского периода в общих чертах был сходен с существовавшим в триасе. Во флоре доминировали саговниковые и хвойные древесные породы. Впервые появились гинкговые - голосеменные широколиственные древесные растения с опадающей осенью листвой (вероятно, это связующее звено между голосеменными и покрытосеменными растениями). Единственный вид этого семейства - гинкго двулопастный - сохранился до настоящего времени и считается самым древним представителем древесных, поистине живым ископаемым. Юрская фауна беспозвоночных весьма сходна с триасовой. Однако более многочисленными стали кораллы-рифостроители, широко распространились морские ежи и моллюски. Появились многие двустворчатые моллюски, родственные современным устрицам. Все еще были многочисленны аммониты. Позвоночные были представлены преимущественно пресмыкающимися, поскольку стегоцефалы вымерли в конце триаса. Динозавры достигли кульминации своего развития. Такие травоядные формы, как апатозавры и диплодоки, стали передвигаться на четырех конечностях; многие имели длинные шею и хвост. Эти животные приобрели гигантские размеры (до 27 м в длину), а некоторые весили до 40 т. У отдельных представителей травоядных динозавров меньших размеров, например стегозавров, развился защитный панцирь, состоявший из пластин и шипов. У плотоядных динозавров, в частности аллозавров, сформировались крупные головы с мощными челюстями и острыми зубами, в длину они достигали 11 м и передвигались на двух конечностях. Другие группы пресмыкающихся тоже были весьма многочисленны. В юрских морях обитали плезиозавры и ихтиозавры. Впервые появились летающие пресмыкающиеся - птерозавры, у которых развились перепончатые крылья, как у летучих мышей, а масса уменьшилась за счет трубчатых костей. Появление птиц в юре - важный этап в развитии животного мира. В лагунных известняках Золенхофена были обнаружены два птичьих скелета и отпечатки перьев. Однако эти примитивные птицы еще имели много черт, общих с пресмыкающимися, включая острые зубы конической формы и длинные хвосты. Юрский период завершился интенсивной складчатостью, в результате которой на западе США сформировались горы Сьерра-Невада, которые простирались дальше на север в пределы современной западной Канады. Впоследствии южная часть этого складчатого пояса снова испытала поднятие, которое предопределило строение современных гор. На других материках проявления орогенеза в юре были незначительны.
Меловой период. В это время накапливались мощные слоистые толщи мягкого слабо уплотненного белого известняка - мела, от которого произошло название периода. Впервые такие слои были изучены в обнажениях по берегам пролива Па-де-Кале близ Дувра (Великобритания) и Кале (Франция). В других частях света отложения соответствующего возраста тоже называют меловыми, хотя там встречаются и другие типы пород. В меловой период морские трансгрессии охватывали значительные части Европы и Азии. В центральной Европе моря заливали два субширотных геосинклинальных прогиба. Один из них располагался в пределах юго-восточной Англии, северной Германии, Польши и западных районов России и на крайнем востоке достигал субмеридионального Уральского прогиба. Другая геосинклиналь, Тетис, сохраняла свое прежнее простирание в южной Европе и северной Африке и соединялась с южной оконечностью Уральского прогиба. Далее море Тетис продолжалось в Южной Азии и восточнее Индийского щита соединялось с Индийским океаном. За исключением северной и восточной окраин, территория Азии на протяжении всего мелового периода не заливалась морем, поэтому там широко распространены континентальные отложения этого времени. Мощные слои меловых известняков представлены во многих районах Западной Европы. В северных районах Африки, куда заходило море Тетис, накопились большие толщи песчаников. Пески пустыни Сахара образовались в основном за счет продуктов их разрушения. Австралия покрывалась меловыми эпиконтинентальными морями. В Южной Америке на протяжении большей части мелового периода Андский прогиб заливался морем. Восточнее его на значительной территории Бразилии отложились терригенные алевриты и пески с многочисленными остатками динозавров. В Северной Америке окраинные моря занимали береговые равнины Атлантического океана и Мексиканского залива, где накапливались пески, глины и меловые известняки. Другое окраинное море располагалось на западном побережье материка в пределах Калифорнии и доходило до южных подножий возрожденных гор Сьерра-Невада. Однако последняя самая крупная морская трансгрессия охватила западные районы центральной части Северной Америки. В это время сформировался обширный геосинклинальный прогиб Скалистых гор, и огромное море распространялось от Мексиканского залива через современные Великие равнины и Скалистые горы на север (западнее Канадского щита) вплоть до Северного Ледовитого океана. Во время этой трансгрессии была отложена мощная многослойная толща песчаников, известняков и глинистых сланцев. В конце мелового периода происходил интенсивный орогенез в Южной и Северной Америке и Восточной Азии. В Южной Америке осадочные породы, накопившиеся в Андской геосинклинали за несколько периодов, были уплотнены и смяты в складки, что привело к образованию Анд. Аналогичным образом в Северной Америке на месте геосинклинали сформировались Скалистые горы. Во многих районах мира усилилась вулканическая деятельность. Лавовые потоки покрыли всю южную часть п-ова Индостан (таким образом сформировалось обширное плато Декан), а небольшие излияния лавы имели место в Аравии и Восточной Африке. Все материки испытали значительные поднятия, и произошла регрессия всех геосинклинальных, эпиконтинентальных и окраинных морей. Меловой период ознаменовался несколькими крупными событиями в развитии органического мира. Появились первые цветковые растения. Их ископаемые остатки представлены листьями и древесиной пород, многие из которых растут и в настоящее время (например, ива, дуб, клен и вяз). Меловая фауна беспозвоночных в целом аналогична юрской. Среди позвоночных животных наступила кульминация видового разнообразия пресмыкающихся. Существовали три основные группы динозавров. Хищные с хорошо развитыми массивными задними конечностями были представлены тираннозаврами, которые в длину достигали 14 м, а в высоту - 5 м. Получила развитие группа двуногих травоядных динозавров (или траходонтов) с широкими уплощенными челюстями, напоминающими утиный клюв. Многочисленные скелеты этих животных встречаются в меловых континентальных отложениях Северной Америки. К третьей группе относятся рогатые динозавры с развитым костяным щитом, защищавшим голову и шею. Типичный представитель этой группы - трицератопс с коротким носовым и двумя длинными надглазными рогами. В меловых морях обитали плезиозавры и ихтиозавры, появились морские ящерицы мозазавры с вытянутым туловищем и сравнительно небольшими ластовидными конечностями. Птерозавры (летающие ящеры) утратили зубы и лучше передвигались в воздушном пространстве, чем их юрские предки. У одного из видов птерозавров - птеранодона - размах крыльев достигал 8 м. Известны два вида птиц мелового периода, сохранившие некоторые морфологические особенности рептилий, например размещенные в альвеолах зубы конической формы. Один из них - гесперорнис (ныряющая птица) - приспособился к жизни в море. Хотя переходные формы, больше похожие на рептилий, чем на млекопитающих, известны с триаса и юры, впервые многочисленные остатки настоящих млекопитающих были обнаружены в континентальных верхнемеловых отложениях. Примитивные млекопитающие мелового периода отличались небольшими размерами и чем-то напоминали современных землероек. Широко развитые на Земле процессы горообразования и тектонические поднятия материков в конце мелового периода привели к столь значительным изменениям природы и климата, что многие растения и животные вымерли. Из беспозвоночных исчезли господствовавшие в мезозойских морях аммониты, а из позвоночных - все динозавры, ихтиозавры, плезиозавры, мозазавры и птерозавры. Кайнозойская эра, охватывавшая последние 65 млн. лет, подразделяется на третичный (в России принято выделять два периода - палеогеновый и неогеновый) и четвертичный периоды. Хотя последний отличался малой продолжительностью (возрастные оценки его нижней границы колеблются от 1 до 2,8 млн. лет), он сыграл большое значение в истории Земли, поскольку с ним связаны неоднократные материковые оледенения и появление человека.
Третичный период. В это время многие районы Европы, Азии и Северной Африки были покрыты мелководными эпиконтинентальными и глубоководными геосинклинальными морями. В начале этого периода (в неогене) море занимало юго-восточную Англию, северо-западную Францию и Бельгию и там накопилась мощная толща песков и глин. Все еще продолжало существовать море Тетис, простиравшееся от Атлантического до Индийского океана. Его воды заливали Пиренейский и Апеннинский полуострова, северные районы Африки, юго-западную Азию и север Индостана. В этом бассейне отлагались мощные горизонты известняков. Большая часть северного Египта сложена нуммулитовыми известняками, которые использовались в качестве строительного материала при возведении пирамид. В это время почти вся юго-восточная Азия была занята морскими бассейнами и небольшое эпиконтинентальное море распространялось на юго-востоке Австралии. Третичные морские бассейны покрывали северную и южную оконечности Южной Америки, а эпиконтинентальное море проникало на территорию восточной Колумбии, северной Венесуэлы и южной Патагонии. Мощные толщи континентальных песков и алевритов накапливались в бассейне Амазонки. Окраинные моря располагались на месте современных Береговых равнин, прилегающих к Атлантическому океану и Мексиканскому заливу, а также вдоль западного побережья Северной Америки. Мощные толщи континентальных осадочных пород, образовавшихся в результате денудации возрожденных Скалистых гор, накапливались на Великих равнинах и в межгорных впадинах. Во многих районах земного шара в середине третичного периода происходил активный орогенез. В Европе образовались Альпы, Карпаты и Кавказ. В Северной Америке на заключительных этапах третичного периода сформировались Береговые хребты (в пределах современных штатов Калифорния и Орегон) и Каскадные горы (в пределах Орегона и Вашингтона). Третичный период ознаменовался существенным прогрессом в развитии органического мира. Современные растения возникли еще в меловом периоде. Большинство третичных беспозвоночных были непосредственно унаследованы от меловых форм. Многочисленнее стали современные костистые рыбы, уменьшились численность и видовое разнообразие земноводных и пресмыкающихся. Произошел скачок в развитии млекопитающих. От примитивных форм, похожих на землероек и впервые появившихся в меловом периоде, берут начало многие формы, относящиеся уже к началу третичного периода. Самые древние ископаемые остатки лошадей и слонов обнаружены в нижнетретичных породах. Появились плотоядные и парнокопытные животные. Видовое разнообразие животных сильно возросло, однако многие из них вымерли уже к концу третичного периода, а другие (подобно некоторым мезозойским пресмыкающимся) вернулись к морскому образу жизни, как, например, китообразные и морские свиньи, у которых плавники представляют собой трансформированные конечности. Летучие мыши смогли летать благодаря перепонке, соединяющей их длинные пальцы. Динозавры, вымершие в конце мезозоя, уступили место млекопитающим, которые стали доминирующим классом животных на суше в начале третичного периода. Четвертичный период подразделяется на эоплейстоцен, плейстоцен и голоцен. Последний начался всего 10 000 лет назад. Современный рельеф и ландшафты Земли в основном оформились в четвертичный период. Горообразование, которое происходило в конце третичного периода, предопределило значительное поднятие материков и регрессию морей. Четвертичный период ознаменовался существенным похолоданием климата и широким развитием покровного оледенения в Антарктиде, Гренландии, Европе и Северной Америке. В Европе центром оледенения был Балтийский щит, откуда ледниковый покров распространялся до южной Англии, средней Германии и центральных районов Восточной Европы. В Сибири покровное оледенение имело меньшие размеры, в основном ограничиваясь предгорными районами. В Северной Америке ледниковые покровы занимали громадную территорию, включая большую часть Канады и северные районы США вплоть до южного Иллинойса. В Южном полушарии четвертичный ледниковый покров характерен не только для Антарктиды, но и для Патагонии. Кроме того, на всех материках было широко распространено горное оледенение. В плейстоцене выделяют четыре основных этапа активизации оледенения, чередовавшиеся с межледниковьями, во время которых природные условия были близки современным или даже более теплыми. Последний ледниковый покров на территории Европы и Северной Америки достигал наибольших размеров 18-20 тыс. лет назад и окончательно растаял в начале голоцена. В четвертичный период вымерли многие третичные формы животных и появились новые, приспособившиеся к более холодным условиям. Особо следует отметить мамонта и шерстистого носорога, которые населяли северные области в плейстоцене. В более южных районах Северного полушария встречались мастодонты, саблезубые тигры и др. Когда ледниковые покровы растаяли, представители плейстоценовой фауны вымерли и их место заняли современные животные. Первобытные люди, в частности неандертальцы, вероятно, существовали уже во время последнего межледниковья, но человек современного типа - человек разумный (Homo sapiens) - появился лишь в последнюю ледниковую эпоху плейстоцена, а в голоцене расселился по всему земному шару.
Большой Энциклопедический словарь

  • Геология (от Гео… и …логия (См. ...Логия))

    комплекс наук о земной коре и более глубоких сферах Земли; в узком смысле слова - наука о составе, строении, движениях и истории развития земной коры и размещении в ней полезных ископаемых. Большинство прикладных и теоретических вопросов, решаемых Г., связано с верхней частью земной коры, доступной непосредственному наблюдению.

    На прямых полевых наблюдениях основаны главным образом и геологические методы. Геологические исследования определённой территории начинаются с изучения и сопоставления горных пород, наблюдаемых на поверхности Земли в различных естественных обнажениях, а также в искусственных выработках (Шурф ах, Карьер ах, Шахта х и др.). Породы изучаются как в их природном залегании, так и путём отбора образцов, подвергаемых затем лабораторному исследованию.

    Обязательным элементом полевых работ геолога является Геологическая съёмка , сопровождаемая составлением геологической карты (См. Геологические карты) и геологических профилей. На карте изображается распространение горных пород, указывается их генезис и возраст, а по мере надобности также состав пород и характер их залегания. Геологические профили отражают взаимное расположение слоев горных пород по вертикали на мысленно проведённых разрезах. Геологические карты и профили служат одним из основных документов, на основании которых делаются эмпирические обобщения и выводы, обосновываются поиски и разведка полезных ископаемых, оцениваются условия при возведении инженерных сооружений. Для уточнения данных геологической съёмки иногда прибегают к бурению скважин, которые позволяют извлечь на поверхность горные породы, залегающие на достаточной глубине. В СССР, кроме того, проводится т. н. Опорное бурение (с 1947), при котором обширные территории покрываются более или менее равномерной сетью глубоких скважин, что даёт возможность составить общую схему геологического строения страны, полнее использовать данные съёмки. С середины 20 в. в СССР и США осуществляется бурение скважин глубиной до 7 км и более. Успешно проводится бурение морского дна в местах относительно малых глубин. С конца 60-х гг. 20 в. американские геологи ведут бурение в океане со специально оборудованных кораблей.

    Методы непосредственного изучения недр не дают возможности познать строение Земли глубже, чем на несколько км (иногда до 20) от её поверхности. Поэтому даже для изучения земной коры, а тем более нижележащих геосфер (См. Геосферы), Г. не обходится без помощи косвенных методов, разработанных др. науками, особенно без геохимических и геофизических методов. Очень часто применяется комплекс геологических, геофизических и геохимических методов.

    В геологических исследованиях можно различить три основных направления. Задачей первого из них (описательная Г.) служит описание минералов, горных пород и их типов; изучение состава, формы, размеров, взаимоотношений, последовательности залегания и всех прочих вопросов, связанных с современным размещением и составом геологических тел (слоев горных пород, гранитных массивов и др.). Второе направление (динамическая Г.) заключается в изучении геологических процессов и их эволюции. К числу этих процессов относятся как внешние по отношению к земной коре и более глубоким геосферам (разрушение горных пород, перенос и переотложение ветром, ледниками, наземными и подземными водами; накопление осадков на дне рек, озёр, морей, океанов и др.), так и внутренние (движения земной коры, землетрясения, извержения вулканов и сопутствующие им явления). Геологические процессы изучаются не только в естественных условиях, но и экспериментально. Восстановление картины геологического прошлого Земли (историко-геологическая реконструкция) составляет сущность третьего направления геологических исследований (историческая Г.). Задачи этого направления сводятся к изучению распространения и последовательности образования геологических напластований и др. геологических тел, а также к установлению последовательности различных геологических процессов и событий, например процессов тектогенеза, метаморфизма, образования и разрушения залежей полезных ископаемых, трансгрессий и регрессий морей, смены эпох оледенений эпохами межледниковий и т.д. Все три направления Г. неразрывно связаны друг с другом и исследование каждого геологического объекта, как и любой территории, ведётся со всех трёх точек зрения, хотя каждое направление является самостоятельным в смысле основных принципов и методов исследования.

    Специфическая особенность геологических процессов состоит в том, что многие из них протекают на огромных территориях и продолжаются в течение миллионов и даже миллиардов лет; в этом заключается трудность их исследования. Чтобы понять геологические процессы прошлого, изучается весь комплекс результатов, оставленных ими в толщах пород: особенности их состава, строения и залегания, формы рельефа земной поверхности и т.д.

    При анализе историко-геологических данных принимается во внимание принцип последовательности напластования слоистых осадочных толщ, которые рассматриваются как страницы «каменной летописи» Земли; учитывается также необратимая эволюция органического мира, запечатлевшаяся в окаменевших остатках растительных и животных организмов, которые сохраняются в пластах осадочных пород (см. Палеонтологический метод). Каждой из эпох в развитии Земли соответствовали определённые растения и животные. Это послужило основой для установления относительного возраста толщ горных пород и позволило подразделить историю последних 600 млн. лет жизни Земли на последовательные отрезки времени - эры, которые делятся на более мелкие единицы геологического времени - периоды, эпохи и века (см. Геохронология). Исследования показывают, что 80% объёма осадочной оболочки Земли образуют самые древние, докембрийские, толщи (см. Докембрий), продолжительность образования которых составляет по крайней мере 6 / 7 всей известной геологической истории. Помимо относительного возраста, определяется абсолютный, или радиометрический, возраст геологических тел. Метод его вычисления основан на законе постоянства скоростей радиоактивного распада; в качестве исходных данных берутся цифры относительного количества расщепляющего элемента и продуктов его распада в исследуемой горной породе или минерале. Этот метод имеет особенное значение для древнейших докембрийских толщ Земли, очень скудно охарактеризованных органическими остатками.

    Широко используется в Г. метод Актуализм а, согласно которому в сходных условиях геологические процессы идут сходным образом; поэтому, наблюдая современные процессы, можно судить о том, как шли аналогичные процессы в далёком прошлом. Современные процессы можно наблюдать в природе (например, деятельность рек) или создавать искусственно (подвергая, например, образцы горных пород действию высокой температуры и давления). Таким путём часто удаётся установить физико-географические и физико-химические условия, в которых отлагались древние слои, а для метаморфических горных пород и примерную глубину, на которой произошёл метаморфизм (изменение). Однако географическая и геологическая обстановка в жизни Земли необратимо менялась; поэтому, чем древнее изучаемые толщи, тем ограниченнее применение метода актуализма.

    Разработка теоретических вопросов Г. тесно связана с одной из её крупнейших практических задач - прогнозом поиска и разведки полезных ископаемых и созданием минерально-сырьевой базы мирового хозяйства.

    Большое значение имеет Г. также при проектировании различных инженерных сооружений, в строительстве, сельском хозяйстве, военном деле. Велика роль Г. и в борьбе за материалистическое миропонимание.

    Связь геологии с другими науками и система геологических наук. Современная Г. тесно связана с очень большим числом др. наук, главным образом наук о Земле. Именно поэтому трудно установить точные границы Г. как науки и определить однозначно её предмет. Широкое применение при геологических исследованиях физических и химических методов способствовало бурному развитию таких пограничных дисциплин, как Физика Земли и Геохимия . Физика Земли изучает физические свойства Земли и её оболочек, а также происходящие в этих оболочках геологические процессы. Геохимия рассматривает химический состав Земли и законы распространения и миграций в ней химических элементов. Г. не может обойтись без применения методов и выводов этих наук. В геохимии и физике Земли органически сливаются физические и химические приёмы исследования, с одной стороны, и геологические - с другой. Поэтому положение геохимии и физики Земли в системе наук о Земле является дискуссионным. Их рассматривают либо как наиболее развившиеся геологические дисциплины, либо как области знания, равнозначные Г. Тесная связь объединяет Г. с геодезией и с комплексом физико-географических наук (геоморфологией, климатологией, гидрологией, океанологией, гляциологией и др.), в задачи которых входит изучение рельефа земной поверхности, вод суши и Мирового океана, климатов Земли и др. вопросов, касающихся строения, состава и развития географической оболочки (См. Географическая оболочка). Для полного понимания истории Земли необходимо знать её начальное состояние; такой вопрос решает планетная космогония, т. е. раздел астрономии, изучающий проблему образования планет. В вопросах происхождения и развития органической жизни на Земле Г. взаимосвязана с биологическими науками и прежде всего с палеонтологией. Знание биологических и биохимических процессов необходимо геологу для выяснения путей образования ряда горных пород и полезных ископаемых (нефти, угля и др.). Т. о., весь комплекс наук, изучающих Землю, характеризуется многосторонней связью и взаимодействием. Г. использует данные этих наук для решения общих проблем развития планеты. Это позволяет некоторым исследователям отводить Г. ведущее место среди наук о Земле или даже понимать под Г. весь комплекс наук о Земле.

    Г. включает ряд научных дисциплин, занимающихся исследованием и описанием Земли. Комплекс этих дисциплин пополняется по мере расширения исследований планеты за счёт их дифференциации и появления новых научных направлений, возникающих главным образом на стыке Г. с другими областями знания. Предмет большинства геологических дисциплин относится ко всем трём направлениям Г. (описательной, динамической и исторической). Этим объясняется тесная взаимосвязь геологических дисциплин и трудность их классификации, разделения на четко разграниченные группы.

    Наиболее принятыми считаются следующие группы геологических дисциплин: научной дисциплины, изучающие вещество и структуру (строение) земной коры; дисциплины, рассматривающие современные геологические процессы (динамическая Г.); дисциплины, изучающие историческую последовательность геологических процессов (историческая Г.); дисциплины прикладного значения; в особую группу выделяется Г. отдельных областей и районов (региональная Г.).

    К первой группе относятся: минералогия (учение о минералах - природных устойчивых химических соединениях), петрография (учение о горных породах - структурно-вещественных ассоциациях минералов), структурная Г., изучающая формы залегания геологических тел, различные нарушения в залегании слоев - их изгибы, разрывы и т.п. Как одно из направлений минералогических исследований зародилась и долгое время развивалась кристаллография. Однако в последнее время изучение атомарного строения кристаллов сделало эту дисциплину в значительной мере физической.

    Ко второй группе геологических дисциплин (динамическая Г.) относится тектоника, изучающая движения земной коры и создаваемые ими структуры. Применительно к самым крупным структурам Земли - материкам и океанам - её называют часто геотектоникой, а тектонику неоген - антропогенового времени именуют неотектоникой. Обособленно стоит экспериментальная тектоника, которая занимается изучением тектонических процессов (например, образованием складок) на моделях. В эту же группу входят разделы минералогии и петрографии, изучающие процессы минерало- и породообразования, а также такие дисциплины, как вулканология, изучающая процессы вулканизма, сейсмогеология - наука о геологических процессах, сопровождающих землетрясения, и об использовании геологических данных для определения сейсмически опасных районов (сейсморайонирование) и геокриология, исследующая процессы, связанные с многолетнемёрзлыми породами.

    К третьей группе относится историческая Г., восстанавливающая по следам, сохранившимся в осадочной оболочке Земли, события геологической истории и их последовательность. К этой же группе относится стратиграфия, занимающаяся изучением последовательности отложения слоев горных пород в осадочной оболочке Земли, и палеогеография, которая на основании геологических данных занимается восстановлением физико-географических условий прошлых геологических периодов. В силу своеобразия применяемых методов исследования изучение геологической истории последнего антропогенового периода выделилось в особую дисциплину, неточно называемую четвертичной Г.

    Четвёртая группа (прикладная Г.) включает: Г. полезных ископаемых; гидрогеологию - науку о подземных водах; инженерную Г., изучающую геологические условия строительства различных сооружений, и военную Г., занимающуюся вопросами применения Г. в военном деле.

    Особое место среди геологических дисциплин в смысле методики и задач занимает Г. дна морей и океанов, или Морская геология , которая успешно развивается в связи с возросшим интересом к использованию природных ресурсов морей и океанов.

    Сказанное не исчерпывает перечня геологических дисциплин. Их дифференциация, а также сращивание со смежными дисциплинами ведут к появлению новых направлений. Например, поскольку методы исследования горных пород глубинного и осадочного происхождения оказались существенно различными, петрография разделилась на петрографию изверженных и петрографию осадочных пород, или литологию. Внедрение химических методов в изучение изверженных пород привело к возникновению петрохимии, а изучение деформаций внутри горных пород породило петротектонику.

    Резко дифференцирована Г. полезных ископаемых: Г. нефти и газа, Г. угля, металлогения, рассматривающая закономерности размещения рудных месторождений. Применение в Г. новейших физических и химических методов послужило основой для появления таких новых специализаций, как тектонофизика, палеомагнетизм, экспериментальная физическая химия силикатов и др.

    Исторический очерк . Отдельные наблюдения и высказывания, которые принято считать истоками Г., относятся к глубокой древности. Характерно, что высказывания античных учёных (Пифагора, Аристотеля, Плиния, Страбона и др.) касаются землетрясений, извержений вулканов, размывания гор, перемещения береговых линий морей и т.п., т. е. явлений динамической Г. Только в средние века появляются попытки описания и классификации геологических тел, например описание минералов узбекским учёным Бируни и таджикским естествоиспытателем Ибн Синой (См. Ибн Сина) (латинизированный - Авиценна). К эпохе Возрождения относятся первые суждения (если не считать ранних упоминаний об этом у древнегреческого учёного Страбона) об истинной природе ископаемых раковин как остатках вымерших организмов и о большой, по сравнению с библейскими представлениями, длительности истории Земли (итальянские учёные Леонардо да Винчи в 1504-06, Дж. Фракасторо в 1517). Разработка первых представлений о смещении слоев и их первоначальном горизонтальном залегании принадлежит датчанину Н. Стено (1669), который впервые дал анализ геологического разреза (в Тоскане), объясняя его как последовательность геологических событий.

    Слово «геология» появилось в печати в15 в., но имело тогда совершенно другое значение, чем то, которое вкладывается в него теперь. В 1473 в Кельне вышла книга епископа Р. де Бьюри «Philobiblon» («Любовь к книгам»), в которой Г. называется весь комплекс закономерностей и правил «земного» бытия, в противоположность теологии - науке о духовной жизни. В современной его понимании термин «Г.» впервые был применен в 1657 норвежским естествоиспытателем М. П. Эшольтом в работе, посвященной крупному землетрясению, охватившему всю Южную Норвегию (Geologia Norwegica, 1657). В конце 18 в. нем. геолог Г. К. Фюксель предложил, а немецкий минералог и геолог А. Г. Вернер ввёл (1780) в литературу термин «геогнозия» для явлений и объектов, изучаемых геологами на поверхности Земли. С этого времени и до середины 19 в. термин «геогнозия» шире, чем в других странах, применялся в России и Германии (хотя чёткого разграничения между понятиями «геология» и «геогнозия» не было). В Великобритании и Франции этот термин употреблялся очень редко, а в Америке почти совсем не применялся. С середины 19 в. термин «геогнозия» в России постепенно исчезает. Некоторое время он ещё встречается в названиях учёных степеней и в названиях кафедр старых русских университетов, но к 1900 он уже не фигурирует, вытесняясь термином «Г.".

    Конец 17 в. характеризовался ростом числа геологических наблюдений, а также появлением научных произведений, в которых делаются попытки обобщить далеко ещё не достаточные знания в некоторую общую теорию Земли, при полном отсутствии удовлетворительной для этого методические основы. Большинство учёных конца 17 - начала 18 вв. придерживалось представления о существовании в истории Земли всемирного потопа, в результате которого образовались осадочные породы и содержащиеся в них окаменелости. Эти воззрения, получившие название дилювианизма, разделяли английские естествоиспытатели Р. Гук (1688), Дж. Рей (1692), Дж. Вудворд (1695), швейцарский учёный И. Я. Шёйкцер (1708) и др.

    Г. как самостоятельная ветвь естествознания начала складываться во 2-й половине 18 в., когда под влиянием нарождающейся крупной капиталистической промышленности стали быстро расти потребности общества в ископаемом минеральном сырье и в связи с этим возрос интерес к изучению недр. Этот период истории Г. характеризовался разработкой элементарных приёмов наблюдения и накопления фактического материала. Исследования сводились главным образом к описанию свойств и условий залегания горных пород. Но уже тогда появлялись попытки объяснить генезис горных пород и вникнуть в суть процессов, происходящих как на поверхности Земли, так и в её недрах.

    Выдающееся значение имели геологические труды М. В. Ломоносова - «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он всесторонне и взаимосвязанно излагал существовавшие в то время геологические данные и собственные наблюдения. Решающую роль в формировании лика Земли Ломоносов отводил глубинным силам («жару в земной утробе»), признавая вместе с тем влияние на земную поверхность и внешних факторов (ветра, рек, дождей и др.), развивал идею единства формирования гор и впадин, утверждал длительность и непрерывность геологических изменений, которым подвергается земная поверхность. Признанием синтеза внешних и внутренних сил в их влиянии на развитие Земли Ломоносов намного опередил свою эпоху, в то время, как на Западе происходила идейная борьба между противостоящими друг другу школами - Нептунизм ом и Плутонизм ом, борьба, касавшаяся коренных проблем прошлого и настоящего Земли. Представителями этих школ были профессор минералогии во Фрейберге, саксонец А. Г. Вернер и шотландский учёный Дж. Геттон.

    Нептунист Вернер стоял на крайне односторонних позициях, утверждая, что все горные породы, включая базальт, образовались как осадки из водной среды, что же касается вулканической деятельности, то её он наивно приписывал подземному горению каменного угля. Кроме того, Вернер, проводивший геологические наблюдения только в окрестностях Фрейберга, неправомерно распространял замеченные там закономерности (например, последовательность формаций) на всю поверхность земного шара. Работы Дж. Геттона и его последователей - плутонистов соответствовали более верному направлению геологических идей, поскольку в них отводилась значительная роль внутренним силам Земли. В этих работах указывалось на вулканическое происхождение базальтов и на образование гранитов из расплавленных масс, что впоследствии было подтверждено микроскопическими исследованиями пород и специальными экспериментами.

    В середине 18 в. появляются геологические карты (точнее, литолого-петрографические), сначала небольших участков, а затем и крупных территорий. На этих картах показывался состав горных пород, но не указывался возраст. В России первой «геогностической» картой была карта Восточного Забайкалья, составленная в 1789-94 Д. Лебедевым и М. Ивановым. Первая «геолого-стратиграфическая карта», охватывавшая значительные территории Европейской России, составлена в конце 1840 Н. И. Кокшаровым. На ней уже были выделены формации - силурийская, древнего красного песчаника (девон), горного известняка (нижний карбон), лиасовая и третичная. В начале 1841 Г. П. Гельмерсен опубликовал «Генеральную карту горных формаций Европейской России».

    Рождение Г. как науки относится к концу 18 - начале 19 вв. и связывается с установлением возможности разделять слои земной коры по возрасту на основании сохранившихся в них остатков древней фауны и флоры. Позднее это позволило обобщить и систематизировать разрозненные ранее минералогические и палеонтологические данные, сделало возможным построение геохронологической шкалы и создание геологических реконструкций.

    Впервые на возможность расчленения слоистых толщ по сохранившимся в них ископаемым органическим остаткам указал в 1790 английский учёный У. Смит, который составил «шкалу осадочных образований Англии», а затем в 1815 первую геологическую карту Англии. Большие заслуги в расчленении земной коры по остаткам моллюсков и позвоночных принадлежат французским учёным Ж. Кювье и А. Броньяру. В 1822 в юго-западной части Англии была выделена каменноугольная, а в Парижском бассейне - меловая системы, что положило начало стратиграфической систематике. Но методологическая основа первых стратиграфических исследований была несовершенной. Различие характера органических остатков в пластах, следующих один за другим, было объяснено французким учёным Ж. Кювье серией катастроф, вызванных сверхъестественными силами, во время которых на обширных пространствах всё живое уничтожалось, а затем опустошённые области заселялись организмами, мигрировавшими из других районов. Ученики и последователи Ж. Кювье развили это учение (см. Катастроф теория). Они утверждали, что в истории Земли было 27 катастроф (А. Д’Орбиньи), во время которых погибал весь органический мир и затем вновь возникал под влиянием очередного божественного акта, но уже в измененном виде. Нарушенное залегание первично горизонтальных слоев горных пород и образование гор считалось следствием этих же кратковременных катастроф. Немецкий геолог Л. Бух выступил в 1825 с теорией «кратеров поднятия», объясняя все движения земной коры за счёт вулканизма; эти идеи он отстаивал и в дальнейшем, хотя в 1833 французский учёный К. Прево выяснил, что вулканические конусы представляют собой не поднятия, а скопления продуктов извержения. В то же время французский геолог Л. Эли де Бомон (1829) предложил контракционную гипотезу, объясняющую дислокации слоев сжатием земной коры при остывании и уменьшении объёма её центрального раскалённого ядра. Эта гипотеза разделялась большинством геологов до начала 20 в.

    Трудом Ч. Лайеля «Основы геологии» (1830-33) был нанесён первый удар взглядам катастрофистов. Были окончательно опровергнуты предрассудки о малой продолжительности геологической истории Земли и на большом фактическом материале показано, что для объяснения её нет необходимости обращаться к сверхъестественным силам и катастрофам, т.к. действующие ныне геологические агенты (атмосферные осадки, ветер, морские приливы, вулканы, землетрясения) на протяжении миллионов лет производят величайшие изменения в строении земной коры. Важным достижением Ч. Лайеля и его современников в Германии, России и Франции была глубокая разработка актуалистического метода, позволившего расшифровать события геологического прошлого. Представления, выработанные Ч. Лайелем, имели и свои недостатки, заключавшиеся в том, что он считал действующие на Земле силы постоянными по качеству и по интенсивности, не видел их изменения и связанного с этим развития Земли (см. Униформизм).

    Огромное значение для дальнейшего развития стратиграфии имело эволюционное учение Ч. Дарвина. Оно дало прочную методологическую базу для детального расчленения по возрасту осадочной оболочки Земли путём изучения филогенетических изменений отдельных групп ископаемых животных и растений. В создании эволюционной палеонтологии большую роль сыграли и русские учёные. К. Ф. Рулье, изучавший юрские отложения Подмосковья, ещё до Дарвина защищал идею эволюционного развития неорганической природы и организмов. Во 2-й половине 19 в. эволюционные идеи получили широкое распространение, были разработаны научные принципы историко-геологических исследований (И. Вальтер) и положено начало эволюционной палеонтологии (В. О. Ковалевский). Важное значение имели труды русских исследователей конца 19 - начала 20 вв. А. П. Карпинский в ряде монографий, посвященных ископаемым головоногим моллюскам и рыбам, показал перспективы, которые открывает для стратиграфии изучение развития организмов; А. П. Павлов, исследуя юрские и нижнемеловые отложения, заложил основы сравнительной стратиграфии, учитывающей разнообразие зоогеографических и палео-географических обстановок прошлого; Н. И. Андрусов на примере неогеновых отложений юга России показал тесную связь между изменениями солёности и других физико-географических условий бассейнов прошлого и особенностями развития их фауны.

    Во 2-й половине 19 в. были достигнуты первые успехи в изучении и расчленении докембрийских образований. Американский геолог Дж. Дана (1872) выделил архейскую группу отложений, первоначально охватывавшую весь докембрий; позднее из её состава американские геологи С. Эммонс и Р. Ирвинг (1888) выделили протерозойскую группу.

    Т. о., к концу 80-х гг. были установлены основные подразделения современной стратиграфической шкалы, официально принятой на 2-м Международном геологическом конгрессе в Болонье в 1881. Успехи палеонтологии и стратиграфии способствовали разработке метода восстановления палеогеографических условий прошлых эпох и возникновению к началу 20 в. новой геологической дисциплины - палеогеографии.

    Во 2-й половине 19 в. усиливается процесс дифференциации Г. Из сравнительно монолитной науки Г. превращается в сложный комплекс геологических наук. Кроме стратиграфии, которая была в 19 в. ведущим направлением, обеспечившим хронологическую основу истории Земли, развивались и др. направления Г. Исследовалась не только вертикальная последовательность слоев, но также изменения их вещественного состава по простиранию, связанные с изменением условий образования пород. Швейцарский геолог А. Гресли (1838) впервые предложил все породы, образовавшиеся в одинаковых условиях, объединять под названием «фации». Учение о фациях разрабатывалось русским геологом Н. А. Головкинским.

    Современная минералогия начала создаваться ещё на рубеже 18 и 19 вв. трудами русских геологов В. М. Севергина, Д. И. Соколова, французского учёного Р. Аюи (Гаюи) и шведского химика Я. Берцелиуса. Дальнейшее её развитие в России связано с именами Н. И. Кокшарова, П. В. Еремеева, М. В. Ерофеева и А. В. Гадолина. В конце 19 в. появились главные работы Е. С. Федорова, создателя учения о симметрии и теории строения кристаллического вещества, автора новых методов гониометрических и оптических исследований минералов. В 19 в. в качестве самостоятельной геологической дисциплины обособилась петрография, что связано с началом (1858) использования поляризационных микроскопов для исследования горных пород. Был накоплен огромный материал по их микроскопическому изучению, что позволило разработать первую петрографическую классификацию. Из них наибольшим признанием пользуется до сих пор классификация изверженных пород, предложенная в 1898 русским учёным Ф. Ю. Левинсон-Лессингом. В начале 20 в. получают развитие теоретические исследования по петрографии, в частности по проблемам образования магматических горных пород, происхождения и дифференциации магмы, по изучению процессов метаморфизма; начинается экспериментальное физико-химическое изучение силикатных систем.

    Конец 19 - начало 20 вв. - время нового качественного перелома в истории Г. Переход капитализма в его новую империалистическую стадию вызвал расширение масштабов эксплуатации недр Земли и вовлек в сферу мировых экономических связей новые, ранее не затронутые ими территории. Во всех ведущих странах мира возникают геологические службы, начинающие систематические геологосъёмочные работы (например, геологическая служба США, 1879). Новые обширные области охватываются геологическим исследованием, предваряя развитие в них горной промышленности. Растет поток фактических данных и резко расширяется кругозор геологов, вводится подготовка специалистов-геологов (см. Геологическое образование). Эволюционные идеи прочно обосновываются в Г., и в общих чертах воссоздаётся картина развития Земли и её поверхности.

    Большое значение для развития Г. в России сыграла организация в 1882 Геологического комитета (См. Геологический комитет), которым руководили А. П. Карпинский, Ф. Н. Чернышев, К. И. Богданович и др. С деятельностью комитета связан существенный сдвиг в изучении региональной Г. России и в развитии геологической картографии, позволивший А. П. Карпинскому к Берлинской сессии Международного геологического конгресса (1885) составить карту значительной части Европейской России. Полная геологическая карта Европейской России в масштабе 1:2520000 впервые была составлена и издана под руководством А. П. Карпинского в 1892. Большую роль в развитии геологической картографии сыграло начатое с момента организации Геологического комитета составление общей «десятивёрстной» карты Европейской России (масштаб 1:420000).

    А. П. Карпинский в 1887 впервые осуществил для Европейской России палеогеографические реконструкции, проследив распространение морских отложений и восстановив положение береговых линий для различных геологических периодов. Ему удалось дать общую картину медленных тектонических движений геологического прошлого, начиная с кембрийского периода, для огромной территории Эти движения были противопоставлены им «кряжеобразовательным» процессам, которые локализуются в сравнительно узких зонах. Медленные движения земной коры американский геолог Г. Джильберт в 1890 предложил называть эпейрогеническими, в противоположность более быстрым, горообразующим, или орогеническим.

    Во 2-й половине 19 в. появляются первые представления о существовании особо подвижных поясов земной коры - геосинклиналей (См. Геосинклиналь) (американские геологи Дж. Холл, 1857-59; Дж. Дана, 1873; французский геолог Э. Ог), которые противопоставляются устойчивым областям - Платформа м. Французский геолог М. Бертран и австрийский геолог Э. Зюсс в конце 19 в. для территории Европы выделили разновозрастные эпохи складчатости (каледонская, герцинская и альпийская); началось издание первого многотомного описания геологического строения всей планеты («Лик Земли» австрийского геолога Э. Зюсса). В этой работе горообразование рассматривается с точки зрения контракционной гипотезы (См. Контракционная гипотеза). Детальные исследования тектоники Альп привели к установлению нового типа структур земной коры - шарьяжей (франццзский геолог М. Люжон, 1902). Последующими работами широкое развитие шарьяжей было доказано применительно ко многим горным системам.

    В 20 в. Г., как и всё естествознание в целом, развивается гораздо быстрее, чем ранее. За первыми широкими теоретическими обобщениями следуют новые, часто во многом их исправляющие или опровергающие. Крупным событием этого времени было открытие (1899-1903) французскими учёными П. Кюри и М. Склодовской-Кюри радиоактивного распада элементов, сопровождающегося самопроизвольным выделением тепла. Оно позволило разработать методику определения абсолютного возраста горных пород, а следовательно, и продолжительности многих геологических процессов. На этой основе в последующем получила развитие Г. докембрия [А. А. Полканов, Н. П. Семененко, К. О. Кратц (СССР), Д. Андерсон (США), К. Стоквелл (Канада), Б. А. Шубер (Франция)]. С радиоактивным распадом в недрах Земли стали связывать наличие тепловой энергии планеты, а также активизацию тектонических движений и вулканизм, что привело к коренному пересмотру фундаментальных геологических концепций. В частности, были поколеблены основы контракционной гипотезы, а представления о первоначальном огненно-жидком состоянии Земли были заменены идеями о её образовании из скоплений холодных твёрдых частиц, которые нашли окончательное выражение в космогонической гипотезе О. Ю. Шмидта (СССР) (см. Шмидта гипотеза).

    Всё более насущной становится необходимость перехода от простой констатации эмпирически устанавливаемых закономерностей к подлинному объяснению их причин, к вскрытию основных законов истории развития Земли. Возникает необходимость усиленного изучения глубинных процессов, происходящих в нижних слоях земной коры и в мантии. Усовершенствуется также методика изучения веществ, состава горных пород (масс-спектрометрический, рентгеноструктурный и другие анализы) и строения земной коры.

    Серьёзное внимание было обращено на развитие региональных геологических исследований, особенно на геологическую съёмку как основу для выявления минеральных богатств. Стратиграфические схемы, разработанные к началу 20 в. только для Европы и отчасти для Северной Америки, стали детализироваться и создаваться для всех остальных материков в связи с широким развёртыванием геологического картирования. Увеличение масштабов и глубины бурения и необходимость определения возраста извлекаемых из скважин пород, в которых крупные палеонтологические остатки встречаются редко, привело к изучению в стратиграфических целях микроскопических остатков фауны и флоры (раковинок фораминифер, радиолярий, остракод, диатомей, перидиней, спор и пыльцы растений) и к организации больших коллективов микропалеонтологов (Д. М. Раузер-Черноусова, А. В. Фурсенко и др.). Значительным событием в развитии стратиграфии было установление Н. С. Шатским (1945) новой, рифейской группы отложений, лежащей между протерозоем и палеозоем, и выделение соответствующего отрезка времени в истории Земли продолжительностью около 1 млрд. лет (см. Рифей). Рифейские отложения выделены на всех континентах, а их расчленение и сопоставление разрезов успешно осуществляется с помощью изучения строматолитов (См. Строматолиты). В трудах советских (Д. В. Наливкина, В. В. Меннера, Б. С. Соколова, В. Н. Сакса и др.) и зарубежных (французского геолога М. Жинью, английского геолога В. Аркела, американских геологов Дж. Роджерса, У. К. Крумбейна и мн. др.) геологов была детально разработана стратиграфия палеозойских, мезозойских и кайнозойских отложений.

    В области тектоники для 20 в. характерны: разработка учения о движениях земной коры, в том числе о возможности горизонтальных перемещений крупных её блоков (эпейрофорез); разработка классификаций тектонических форм и теории геосинклиналей и платформ (в СССР - А. Д. Архангельский, М. М. Тетяев, Н. С. Шатский, В. В. Белоусов, М. В. Муратов, В. Е. Хаин; за рубежом - немецкие геологи Х. Штилле и С. Н. Бубнов, швейцарец Э. Арган, американские геологи Р. Обуэн и М. Кей); установление их различных типов и стадий развития, а также переходных между геосинклиналями и платформами образований - краевых прогибов. Впервые выделены в 1946 (А. В. Пейве, Н. А. Штрейс), а затем детально исследованы глубинные разломы земной коры. Успехи теоретической тектоники, а также широкий размах глубокого бурения и геофизических исследований создали предпосылки для тектонического районирования - разделения территории материков на крупные структурные элементы с разной историей развития и, следовательно, с разными ассоциациями и рядами геологических формаций. Учение о формациях было оформлено в трудах Н. С. Шатского и Н. П. Хераскова, а затем для магматических формаций - в трудах Ю. А. Кузнецова.

    В 50-60-х гг. начали составляться тектонические карты СССР (Н. С. Шатский, 1953, 1956; Т. Н. Спижарский, 1966), Европы (Н. С. Шатский, А. А. Богданов и др., 1964), Евразии (А. Л. Яншин и др., 1966), Африки (Ю. А. Шубер, 1968), Северной Америки (Ф. Кинг, 1969), а также крупномасштабные тектонические карты отдельных областей и районов в целях выяснения главных закономерностей размещения полезных ископаемых. В СССР положено начало изучению новейших тектонических движений и созданию неотектоники (В. А. Обручев, Н. Н. Николаев, С. С. Шульц). В связи с разведкой и разработкой полезных ископаемых в осадочных толщах в качестве самостоятельной дисциплины выделились петрография осадочных пород, или литология, в развитии которой главная роль принадлежит советским учёным.

    Отдельный учебный курс петрографии осадочных пород впервые был прочтен в Московском университете и в Московской горной академии в 1922 М. С. Швецовым, воспитавшим несколько поколений советских литологов и написавшим классические работы по литологии каменноугольных отложений Московской синеклизы. В области минералогии осадочных пород интересные исследования проводил в начале 20-х гг. Я. В. Самойлов. А. Д. Архангельский ещё в 1912 дал первый образец сравнительно-литологических исследований, восстановив условия образования верхнемеловых отложений Поволжья по аналогии с осадками современных морей и океанов. После Великой Октябрьской социалистической революции он детально изучал литологию фосфоритов, бокситов и нефтепроизводящих свит. В. П. Батурин разработал метод изучения терригенных минералов с целью восстановления палеогеографических условий осадконакопления. Л. В. Пустовалов в ряде монографий и двухтомной «Петрографии осадочных пород» (1940) впервые поставил вопрос об общих закономерностях процесса осадкообразования и его эволюции в истории Земли. Очень много сделал для выяснения различных вопросов осадочного породообразования, установления его стадий и его климатических типов Н. М. Страхов, трёхтомная монография которого «Основы теории литогенеза» опубликована в 1960-62. Специфику осадочного породообразования в докембрии изучал А. В. Сидоренко, образование соленосных толщ - М. Г. Валяшко, А. А. Иванов, М. П. Фивег и др. Крупные работы в области петрографии осадочных пород принадлежат также американским геологам - У. Твенхофелу, Ф. Дж. Петтиджону, У. К. Крумбейну, Дж. Тейлору.

    С петрографией осадочных пород тесно связано учение о Фация х, получившее наиболее глубокую разработку в трудах Д. В. Наливкина. Разработан ряд новых методов изучения веществ, состава горных пород (спектроскопический, рентгеноструктурный, термометрический анализы). В минералогии была оформлена современная кристаллохимическая теория конституции минералов (Н. В. Белов, В. С. Соболев и др.), достигнуты успехи в синтезе многих минералов (Д. С. Белянкин, Д. П. Григорьев), большая группа работ посвящена пегматитам (А. Н. Заварицкий, А. Е. Ферсман), физико-химическому анализу природных ассоциаций минералов (А. Г. Бетехтин, Д. С. Коржинский и др.). Создан ряд трудов по петрографии, петрохимии и учению о метаморфизме (Ф. Ю. Левинсон-Лессинг, Ю. А. Кузнецов, Н. А. Елисеев, Ю. И. Половинкин, П. Эскола, Т. Барт, Н. Боуэн, Г. Кеннеди, П. Ниггли, Ф. Тернер). Большое значение имели углепетрографические работы, посвященные изучению метаморфизма углей и закономерностям размещения угольных бассейнов (П. И. Степанов, Ю. А. Жемчужников, В. В. Мокринский, В. И. Яворский, И. И. Горский). Разрабатывалась Г. нефти и газа (И. М. Губкин, С. И. Миронов, А. А. Трофимук, М. Ф. Мирчинк, И. О. Брод, чешский геолог К. Крейчи-Граф, американские геологи А. Леворсен и Д. М. Хант). За последние десятилетия выделилась особая отрасль Г.- металлогения (С. С. Смирнов, Ю. А. Билибин, Д. И. Щербаков, К. И. Сатпаев, В. И. Смирнов, Х. М. Абдуллаев, И. Г. Магакьян, Е. Т. Шаталов, А. Г. Левицкий, В. А. Кузнецов, шведский геолог В. Линдгрен, немецкий геолог Г. Шнейдерхен, американские геологи Ч. Ф. Парк, У. Х. Эммонс и др.). Успешно развивались: вулканология (В. И. Влодавец, Б. И. Пийп, Г. С. Горшков, американские геологи Х. Уильямс, А. Ритман, французский геолог Г. Тазиев), гидрогеология и гидрогеохимия (Н. Ф. Погребов, Н. Н. Славянов, А. Н. Семихатов, Ф. П. Саваренский, Г. Н. Каменский, Н. И. Толстихин, И. К. Зайцев), Г. четвертичных отложений (Г. Ф. Мирчинк. Я. С. Эдельштейн, С. А. Яковлев, В. И. Громов, А. И. Москвитин, Е. В. Шанцер, немецкий учёный П. Вольдштедт, американский геолог Р. Флинт, шведский геолог Г. Геер).

    На стыке Г. и химии в 20 в. обособилась геохимия, принципы которой были сформулированы В. П. Вернадским и норвежским геохимиком В. М. Гольдшмидтом и развивались в СССР в трудах А. Е. Ферсмана и А. П. Виноградова. Выяснена огромная роль развития жизни на Земле как фактора, приведшего к образованию органогенных пород (коралловые рифы, каменные угли и др.), существенно изменившего состав атмосферы и гидросферы, а также непосредственно влиявшего на ход многих геологических процессов (например, выветривания). В связи с этим выделился особый раздел геохимии - биогеохимия, а для оболочки Земли, в которой протекают биологические процессы, В. И. Вернадским было предложено название биосферы (См. Биосфера). На стыке Г. и физики развилась геофизика. Появление и развитие геохимии и геофизики в огромной степени способствовало успехам геологических исследований, в практику которых с начала 20-х гг. прочно вошли геофизические и геохимические методы.

    В последнюю четверть века интенсивно развивается Г. дна морей и океанов (в СССР- М. В. Клёнова, П. Л. Безруков, А. П. Лисицын, Г. Б. Удинцев; за рубежом - американские геологи Ф. П. Шепард и Г. У. Менард, Б. Хизен, М. Ю. Юинг, голландский геолог П. Кюнен), в частности в целях промышленного освоения полезных ископаемых обширных пространств континентального шельфа. В исследованиях Г. морского дна широко применяются геофизические методы, а в последние годы и бурение со специально оборудованных судов.

    На территории СССР все отрасли Г. получили бурное развитие после Великой Октябрьской социалистической революции. За годы Советской власти страна покрыта геологической съёмкой масштаба 1:1000000, начатой по инициативе и под руководством А. П. Герасимова, а значительные её области - съёмками масштаба 1:200000, тогда как до 1917 геологические карты, при этом значительно менее детальные, были составлены лишь для 10% площади России. В 1922 и 1925 были изданы первые геологические карты Азиатской части СССР, в 1937 - первые геологические карты территории СССР в целом. Первая геологическая карта территории СССР без «белых пятен» (неисследованных областей) была издана в 1955 в масштабе 1: 2500000. Третье её издание (Д. В. Наливкин, А. П. Марковский, С. А. Музылев, Е. Т. Шаталов) вышло в 1965. Составлен ряд специальных карт - геоморфологических, четвертичных отложений, палеогеографических, палеотектонических, гидрогеологических, гидрогеохимических, магматических формаций, металлогенических, угленакопления, нефтегазоносности и др. Данные о геологическом строении СССР обобщены в трудах В. А. Обручева, А. Д. Архангельского, А. Н. Мазаровича, Д. В. Наливкина, а также в многотомных монографиях «Геология СССР», «Гидрогеология СССР», «Стратиграфия СССР» и др.

    В 1951-52 было издано первое в СССР учебное пособие (автор А. Н. Мазарович) по курсу региональной Г. мира, дающее общую характеристику геологического строения всех материков земного шара. Большое значение имело также издание научно-популярной литературы по Г. (В. А. Обручев, А. Е. Ферсман, В. А. Варсанофьева и др.).

    Работы по планированию и организации геологических исследований в СССР ведутся Министерством геологии СССР и министерствами союзных республик через территориальные геологические управления и геологические учреждения др. министерств, связанных с разработкой минеральных ресурсов и строительством (см. Геологическая служба). Научную работу по Г. проводят около 80 научно-исследовательских институтов и лабораторий Министерства геологии и некоторых др. министерств, АН СССР и АН союзных республик. В СССР издаётся ряд периодических научных геологических журналов (См. Геологические журналы).

    Организация геологических исследований в международном масштабе и обсуждение важнейших проблем Г. осуществляется основанным в 1875 Международным геологическим конгрессом (см. Геологический конгресс Международный). В перерывах между сессиями конгресса межнациональными исследованиями руководит с 1967 Международный союз геологических наук (см. Геологических наук союз).

    Основные задачи геологии. Поскольку залежи полезных ископаемых на поверхности Земли в основном исчерпаны, одной из главных задач современной Г. являются поиски и освоение невидимых с поверхности («слепых», или «скрытых») месторождений. Поиски их могут производиться лишь с помощью геологических прогнозов, что требует усиленного развития всех направлений Г. Для территории СССР эта задача сформулирована в директивах 24-го съезда КПСС, где говорится о необходимости «…проведения исследований в области геологии, геофизики и геохимии для выявления закономерностей размещения полезных ископаемых, повышения эффективности методов их поиска, добычи и обогащения…» (Директивы XXIV съезда КПСС по пятилетнему плану развития народного хозяйства СССР на 1971-1975 годы, 1971, с. 14).

    Для исследования глубинных зон Земли и их минеральных ресурсов необходимо изучение земной коры и верхней мантии геофизическими методами, изучение метаморфических и магматических образований, их состава, строения и условий образования как показателей состояния вещества и его преобразований в глубинных зонах Земли, бурение сверхглубоких скважин и исследование докембрийских толщ с позиций стратиграфии, тектоники, минералогии, петрографии и размещения в них полезных ископаемых.

    В связи с увеличением потребности в цветных и редких металлах и необходимостью расширения минерально-сырьевой базы возникла проблема использования ресурсов морей и океанов. Поэтому одной из актуальных задач Г. является изучение Г. дна морей и океанов (71% всей поверхности Земли). В последнее десятилетие начались работы по детальному изучению подземного тепла как возможного энергетического ресурса будущего. В ряде стран (Исландия, Италия, Япония, Новая Зеландия, в СССР на Камчатке) перегретый пар, выделяющийся из скважин, уже используется для отопления и получения электроэнергии.

    Важнейшей задачей Г. является дальнейшая разработка теории развития Земли, в частности исследование эволюции внутренних и внешних геологических процессов, определяющих закономерности распространения минеральных ресурсов.

    В связи с успехами космических исследований одной из основных проблем Г. становится сравнительное изучение Земли и др. планет.

    Лит.: История и методология науки. Павлов А. П., Очерк истории геологических знаний, [М.], 1921; Хабаков А. В., Очерки по истории геологоразведочных знаний в России. [Материалы для истории геологии], ч. 1, М., 1950; Тихомиров В. В., Хаин В. Е., Краткий очерк истории геологии, М., 1956; История геолого-географических наук, в. 1-3, М., 1959-62; Люди русской науки. Очерки о выдающихся деятелях естествознания и техники, кн. 2 - Геология. География, М., 1962; Тихомиров В. В., Геология в России первой половины 19 века, ч. 1-2, М., 1960-1963; Шатский Н. С., История и методология геологической науки, Избр. труды, т. 4, М., 1965; Взаимодействие наук при изучении Земли, М., 1963; Философские вопросы геологических наук, М., 1967; Гордеев Д. И., История геологических наук, ч. 1 - От древности до конца 19 в., М., 1967; Развитие наук о Земле в СССР, М., 1967; 50 лет советской геологии, М., 1968.

    Общие работы. Ломоносов М. В., О слоях земных и другие работы по геологии, М. - Л., 1949; Соколов Д. И., Руководство к геогнозии, ч. 1, СПБ, 1842; Ляйелль Ч., Основные начала геологии или новейшие изменения земли и ее обитателей, пер. с англ., т. 1-2, М., 1866; Неймайр М., История Земли, т. 1-2, СПБ, 1903-04; Иностранцев А. А., Геология. Общий курс лекций, 4 изд., т. 1-2, СПБ, 1905-12; Ог Э., Геология, пер. с франц., под ред. А. П. Павлова, т. 1, М., 1914; Мушкетов И. В., Мушкетов Д. И., Физическая геология, 4 изд., т. 1, Л.-М.,1935; Карпинский А. П., Собр. соч., т. 1-4, М. - Л., 1939-49; Варсанофьева В. А., Происхождение и строение Земли, М. - Л., 1945; Архангельский А. Д., Избр. труды, т. 1-2, М., 1952-54; Бубнов С. Н., Основные проблемы геологии, М., 1960; Шатский Н. С., Избр. труды, т. 1-4, М., 1963-65; Штилле Г., Избр. труды, пер. с нем., М., 1964; Жуков М. М., Славин В. И., Дунаева Н. Н., Основы геологии, М., 1970; Горшков Г. П., Якушова А. Ф., Общая геология, 2 изд., М., 1962; Suess Ed., Das Antlitz der Erde, Bd 1-3, Prag - W. - Lpz., 1883-1909; Fourmarier P., Principes de géologic, 3 éd., t. 1-2, P., 1949-50; Termier Н. et G., Traité de géologie, v. 1-3, P., 1952-56.


    Геология

    Геоло́гия

    система наук об истории развития Земли и о её внутреннем строении. Осн. внимание уделяется земной коре: её составу, строению, движению и размещению в ней полезных ископаемых, особенно в верхней части, доступной непосредственному наблюдению. Современная геология подразделяется на ряд наук, направлений и дисциплин; некоторые из них (напр., геофизика , исследующая физические поля планеты) граничат с другими естественными науками.
    Историческая геология изучает процесс формирования Земли – как планеты в целом, так и её оболочек. В свою очередь, включает: стратиграфию , которая устанавливает последовательность образования горных пород, в результате чего строится геохронологическая шкала;палеогеографию (часто её относят к системе географических наук), которая восстанавливает ландшафты прошлых геологических эпох; обособляется также четвертичная геология , подробно рассматривающая историю четвертичного периода. Пограничной с биологией является палеонтология , восстанавливающая ход эволюции жизни на Земле по остаткам ископаемых организмов и следам их жизнедеятельности.
    Вещественный состав земной коры изучают следующие науки: минералогия – наука о происхождении и свойствах минералов; петрография – наука о происхождении и свойствах преимущественно магматических и метаморфических горных пород; литология , посвящённая изучению осадочных горных пород. Пограничной с химией является геохимия – наука о распространении и перемещении химических элементов в земной коре и других оболочках Земли.
    Геотектоника занимается общими закономерностями строения земной коры и верхней мантии (литосферы), происхождением и развитием слагающих их частей (тектонических структур), а также движением последних, что является прерогативой особого направления науки – геодинамики .
    Ряд дисциплин наряду с теоретическими углублённо разрабатывают и практические аспекты геологии, направленные на решение народно-хоз. и экологических задач. К таковым можно отнести: гидрогеологию , изучающую подземные воды; геологию полезных ископаемых , изучающую происхождение и распространение месторождений; инженерную геологию , в чьём ведении находятся свойства грунтов и горных пород, знание которых необходимо при строительстве и иных видах хоз. деятельности. Синтезом геологических знаний по конкретной территории занимается региональная геология . Она широко привлекает данные пограничной с географией науки о рельефе Земли – геоморфологии.
    Традиционно геологические исследования опираются на прямые полевые наблюдения, которые затем подвергаются камеральной и лабораторной обработке. Уникальный материал дают буровые работы, особенно на сверхглубоких (более 7 км) скважинах. Начиная с 1950-х гг. широко используются дистанционные методы, в т. ч. материалы космической съёмки (см. Дистанционное зондирование ). Результаты специализированных и комплексных геологических исследований излагаются в виде карт, схем, профилей и текстовых отчётных материалов. В последние десятилетия широко применяются компьютерные методы обработки и хранения информации.
    Истоки геологии уходят в глубокую древность и связаны с наблюдениями античными учёными (Страбон , Плиний и др.) землетрясений, извержений вулканов и др. природных явлений. В Средние века появляются первые описания и классификации минералов, суждения об истинной природе ископаемых раковин как остатках вымерших организмов и о большой по сравнению с библейскими представлениями длительности истории Земли (Леонардо да Винчи). Как самостоятельная ветвь естествознания геология начала складываться во 2-й пол. 18 в. и окончательно оформилась в нач. 19 в., что связано с именами А. Вернера, Ч. Геттона, М. В. Ломоносова, У. Смита и других выдающихся учёных. Труды Ч. Лайеля положили начало разработке метода актуализма, позволившего расшифровать события геологического прошлого. В кон. 19 – нач. 20 в. в ведущих странах мира возникают геологические службы, начинаются систематические геолого-съёмочные работы. В России они связаны с именами А. П. Карпинского, Ф. Н. Чернышёва, К. И. Богдановича и др. В это же время теоретические вопросы геологии продолжают разрабатывать Дж. Холл, Дж. Дана, Э. Ог, Э. Зюсс и др. В настоящее время геология превратилась в одно из ведущих естественно-научных направлений, активно развиваемых в большинстве стран мира.

    География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


    Синонимы :

    Смотреть что такое "геология" в других словарях:

      Геология … Орфографический словарь-справочник

      - (греч., от ge земля, и logos слово). Наука о составе и строении земного шара и о происходивших и происходящих в нем изменениях. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГЕОЛОГИЯ греч., от ge, земля, и logos … Словарь иностранных слов русского языка

      - (от гео... и...логия) комплекс наук о составе, строении и истории развития земной коры и Земли. Истоки геологии относятся к глубокой древности и связаны с первыми сведениями о горных породах, минералах и рудах. Термин геология ввел норвежский… … Большой Энциклопедический словарь

      ГЕОЛОГИЯ, наука о вещественном строении и составе Земли, ее происхождении, о классификациях, изменениях и истории, касающихся геологического развития Земли. Геология делится на несколько разделов. Основная МИНЕРАЛОГИЯ (систематизация полезных… … Научно-технический энциклопедический словарь

      ГЕОЛОГИЯ, геологии, мн. нет, жен. (от греч. ge земля и logos учение). Наука о строении земной коры и о происходящих в ней изменениях. Историческая геология (изучающая историю образования земной коры). Динамическая геология (изучающая физические и … Толковый словарь Ушакова

      геология - и, ж. gTologie f. 1. Физическая география; вообще география. Сл. 18. Геология, наука земнаго шара, о свойствах гор, о переменах годовых времен. Корифей 1 209. 2. Строение земной коры в какой л. местности. БАС 2. Лекс. Ян. 1803: геология; Соколов… … Исторический словарь галлицизмов русского языка

      Современная энциклопедия

      Геогнозия Словарь русских синонимов. геология сущ., кол во синонимов: 12 аэрогеология (1) … Словарь синонимов

      - (от гео... и...логия), комплекс наук о составе, строении и истории развития земной коры и Земли. Термин “геология” ввел норвежский естествоиспытатель М. П. Эшольт (1657). Данные геологии находят широкое применение в экологии. Экологический… … Экологический словарь

      Геология - (от гео... и...логия), комплекс наук о составе, строении, истории развития земной коры и размещении в ней полезных ископаемых. Включает: минералогию, петрографию, геохимию, науку о полезных ископаемых, тектонику, гидрогеологию, геофизику,… … Иллюстрированный энциклопедический словарь

    Геология как наука

    Вступление

    Геология - комплекс наук о земной коре и более глубоких сферах Земли, в узком смысле слова - наука о составе, строении, движении и истории развития земной коры, размещении в ней полезных ископаемых.

    Так выглядит современное определение геологии. Однако, как и большинство важнейших естественных наук, геология берет свое начало в глубокой древности, наверное, с самого появления человека. Возникновение геологии связано с удовлетворением насущных потребностей людей: в жилище, его обогреве, в успешной охоте. Ведь надо знать свойства горных пород, чтобы научиться применять их. Так же необходимо уметь добывать горные породы, различать их и открывать новые месторождения. Для решения связанных с этим задач и необходимы геологические знания. Но изучение минералов для удовлетворения потребностей человека - это лишь корни геологии. В те давние времена ее еще сложно именовать наукой, т.к. люди не обобщали знания, не записывали их, не развивали, а лишь накапливали и применяли на практике.

    Однако постепенно геология развивалась. Во времена античности уже зарождалось представление о минералах и геологических процессах, но только в рамках натурфилософии. Как науку геологию можно рассматривать с начала XIX века . Для этого этапа ее развития характерно обобщение накопленных знаний, создание научных гипотез и поиск их доказательств; использование новых методов исследования, разработанных другими науками, например, химией и физикой. Благодаря всему этому геология становится важной частью системы наук, помогающих человеку осуществлять научно-технический прогресс, удовлетворять его потребности, изучать и использовать природу. На этом этапе геология уже исследует очень сложные вопросы строения веществ, составляющих нашу планету, изучает историю развития Земли и одновременно решает практические проблемы. Это разведка и добыча полезных ископаемых, их переработка и использование, применение земных богатств в повседневной жизни.

    Как мы видим, геология очень важна для современного человека, она имеет древнюю историю и изучает широкий спектр вопросов о природе, имеет большую практическую направленность.

    Об истории, методах исследования и о будущих перспективах этой важной и очень интересной науки я написал в своей работе, основная цель которой описать геологию как науку.

    Для достижения цели определены следующие задачи:

    1.) Описать историю геологии, выделить основные особенности науки в различные периоды ее развития.

    .) Рассказать о методах исследования, применяемых в геологии.

    .) Объяснить значение геологии в современном мире.

    .) Показать важность связи геологии с другими науками.

    .) Рассказать о будущих перспективах развития геологии.

    1. История геологии

    геология наука знание

    По моему мнению, чтобы понять какую-либо науку, необходимо знать, зачем она возникла, как развивалась, что новое появлялось в ней со временем. Эти вопросы наиболее полно раскрываются при изучении развития науки. Поэтому я решил начать свою работу с описания истории геологии.

    Раскрывая историю геологии, я хочу выделить особенности ее развития в разные периоды, рассказать об основных идеях и открытиях, объяснить их смысл и значение и описать итоги достигнутого наукой.

    Историю геологии обычно делят на два этапа - донаучный и научный. Их в свою очередь подразделяют на периоды. Именно по такой схеме я описал историю геологии.

    .1 Донаучный этап (с древности до середины XVIII века)

    Период становления человеческой цивилизации (с древнейших времен до V в. до н.э.)

    В этот период люди накапливали самые первые сведения об окружающем мире. Как я уже говорил, сначала люди удовлетворяли свои важнейшие потребности при помощи различных горных пород, и для более полноценного применения требовалось изучить их свойства, места распространения и способы добычи. Начало изучения, связанных с этим вопросов, мы уже можем рассматривать как зарождение науки геологии.

    Сейчас мы не можем точно сказать что значил камень для древних людей, мы можем лишь рассмотреть следы применения различных горных пород при раскопках стоянок древних людей и сделать свои выводы о применении ими минералогических богатств планеты. Как и наши предположения о необходимости для древних людей горных пород, так и результаты раскопок, говорят о том, что человек использовал камень, чуть ли не сразу после своего появления. Ведь применение орудий труда и отличает человека от обезьяны. Возможно, конечно, что самым примитивным орудием труда первоначально служила деревянная палка, но когда человек обнаружил такие свойства камня, как острота и твердость, он начал использовать острые куски кварца и кремния для своих нужд. Такой вывод о свойствах камней уже является примером накопления геологических знаний. Археологи находят на местах стоянок древних людей не только простые острые камни, но и каменные топоры, наконечники стрел. Несколько позже люди стали применять металлы для изготовления орудий труда. А ведь их поиск и выплавка требуют от человека еще больше знаний и умений.

    Потребность человечества в минеральном сырье еще больше возросла с началом массового строительства городов, с развитием ремесел.

    К концу периода человек уже занимался добычей и переработкой самородных меди, железа, золота, серебра, олова и других металлов. Глина широко применялась для строительства жилья и изготовления гончарных изделий. Драгоценные камни использовались для изготовления ювелирных украшений .

    Так в древности уже начинается накопление некоторых знаний о свойствах горных пород, их добыче и применении.

    Теоретическая ветвь геологии пополняется многочисленными гипотезами о происхождении и строении Земли. Однако в них всегда присутствует вымысел, т.к. древние не могли объяснить многие явления природы .

    В период становления человеческой цивилизации люди используют для дальнейшего совершенствования умений обращения с камнем лишь опыт предыдущих поколений. Человек еще не обобщает знания, что является важной характеристикой периода.

    При переходе к античному периоду развития геологии люди уже знали множество примет для поиска месторождений полезных ископаемых, обладали практическими навыками их использования. Для будущих поколений была создана база геологических знаний.

    Античный период (V в. до н.э. - V в. н.э.)

    В античный период геология развивалась в основном в Греции и в Римской империи. Первоначальный запас знаний о свойствах и применении горных пород в это время уже существовал, однако эти знания в основном имели практическое значение: добыча и использование минералогических богатств планеты. Но поскольку в античные времена люди уже рассуждали о жизни, интересовались устройством мира, то геологические знания стали пополнятся более логическими объяснениями различных явлений и гипотезами их происхождения. Выводы делались на основе осмысления и переработки данных, полученных при наблюдениях. Были более правдоподобными и обоснованными.

    Практическое направление геологии так же продолжало развиваться. Важным как для людей того времени, так и для нас стало, то, что в античный период многие наблюдения и гипотезы записывались. Эти сведения стали служить будущим поколениям, а мы по ним можем судить о развитии науки, в т.ч. и геологии, того времени.

    Достижениями античных ученых-философов можно считать, например, вывод о том, что раньше на месте некоторых областей суши было море. Данный вывод был сделан Ксенофаном на основе нахождения морских раковин в земле. Так же в период античности уже предполагали, что наша планета шарообразная. Такое предположение было сделано на основании наблюдений земной тени на Луне во время лунного затмения. Тень имеет круглую форму, соответственно - отбрасывается круглым или шарообразным телом. А Эратосфен даже вычислил длину окружности Земли. Полученные им результаты лишь незначительно отличались от современных данных.

    Большой вклад в развитие геологии внёс древнегреческий ученый и философ Аристотель. Он предлагал картину шарообразной Земли, внутри которой находятся полости и каналы, в которых циркулируют вода и воздух. Их перемещениями ученый объяснял происходящие на поверхности землетрясения. Интересно, что такая система взглядов соответствует природе Греции, для которой характерны карстовые полости, частые землетрясения. Аристотель внес в науку и некоторые минералогические сведения: составил первую классификацию ископаемых, разделив их на руды, камни и земли.

    Плиний Старший, кроме землетрясений, выделял медленные вертикальные движения земли.

    Страбон высказывал идею о вулканическом происхождении острова Сицилия .

    Именно в период античности были созданы две основные гипотезы формирования Земли. Это плутонизм и нептунизм. Эти гипотезы существовали много веков и равноправно принимались многими великими людьми .

    Плутонизм - это система взглядов, в основу которой входит понимание внутренних геологических сил Земли, как основных факторов формирования ее поверхности и недр. Нептунизм же подразумевает, что все горные породы образовались из вод океана при кристаллизации растворов. Воздействие внутренних сил Земли отвергается.

    Борьба этих гипотез принесла большую пользу геологии, ведь для поиска их доказательств проводилось много исследований. Сейчас мы знаем, что победили сторонники идеи формирования Земли под действием ее внутренних сил (плутонисты). Однако доказано, что минералы могут образовываться и из водных растворов.

    В античный период также были усовершенствованы способы применения геологических знаний на практике. Для обработки металлов стали использовать ковку. А добычу полезных ископаемых стали осуществлять с применением шахт вместо открытых карьеров .

    Таким образом, античный период принес геологии множество полезных знаний. Было положено начало теоретической ветви геологии, записаны результаты наблюдений, что позволило в будущем отталкиваться от этих достижений.

    Следующий период развития геологии был труден не только для нее. Эпоха средневековья характеризовалась застоем науки вообще. Но все-таки знания о Земле продолжали развиваться.

    Схоластический период

    Схоластический период длился с V по XV вв. в Западной Европе. В других странах он продолжался с VII по XVII вв. С падением Римской Империи научные знания прекращают свое стремительное развитие в ее пределах. Греция уже не являлась центром научных идей. Однако и в Западной Европе наука развивалась слабо. Естествознание в это время переходит к ученым Средней Азии, но об их исследованиях сохранилось очень мало данных. До нас дошли лишь некоторые их труды .

    Ибн-Сина (или Авиценна) объяснял изменение земной поверхности двумя причинами. Одна - это воздействие внутренних сил Земли (под ними ученый подразумевал ветер, дующий в подземных пустотах). Благодаря этим силам земная поверхность поднимается, образуя возвышенность. Другая причина - внешние (метеорологические, гидросферные и др.) воздействия, разрушающие участки поверхности планеты, создающие углубления. В этой гипотезе даже учитывалось, что плотность составляющих поверхности, разрушающейся извне, различна. Тогда на месте рыхлых пород образуется понижение рельефа, на месте твердых - его повышение, т.к. вокруг них породы выветриваются сильнее.

    Ибн-Сина также предполагал, что море неоднократно наступало на сушу и снова отступало. Свидетельством этого он видел нахождение в горах слоев различных горных пород. Ученый полагал, что когда суша освободилась от моря, реки промыли в ней долины, т.о. образовался современный ему рельеф.

    Ибн-Синой была создана новая классификация минералов и горных пород. Он разделил их на камни, плавкие тела (металлы), горючие серные вещества и соли. Классификацию переняли европейцы, и она просуществовала достаточно долго.

    Другой ученый Средней Азии - Бируни описал более 100 минералов и назвал их месторождения. Он также научился определять удельный вес минералов, сделав это почти на 700 лет раньше европейцев.

    Некоторые другие азиатские исследователи продолжали развивать идеи античных представлений о мире.

    Причиной медленного развития геологии в Европе явилось влияние церкви. Она вмешивалась в науку с библейской картиной мира и его происхождения. А поскольку геологи предлагали не соответствующее библейскому мировоззрение, их учения и труды подвергались критике или даже запрещались. Из-за этого возникло множество неверных гипотез, ложных учений. Произошло даже некоторое отставание науки от античной. Например, о найденных в земле останках ископаемых живых организмов говорили, будто это игра природы или пример самозарождения жизни, т.к. по церковному учению жизнь создана Богом в таком виде, в каком она есть сейчас, а находками были ныне не существующие организмы. Также вводились ложные учения о том, что Земля является прямоугольником, а звезды на небе передвигают ангелы.

    Некоторые ученые в Европе, игнорируя церковь, предлагали свои идеи о мире. Но они лишь заимствовали античное мировоззрение .

    Однако, несмотря на торможение развития теоретической геологии ее практическая направленность (прикладная геология) развивалась более успешно, особенно в Европе. Это было связано с развитием человечества, и как следствие, с возрастанием потребностей в минеральном сырье.

    Строительство городов требовало природного материала для создания зданий. Возрастание числа городских ремесленников, нуждавшихся в материале для своих изделий, часто изготавливаемых из камня, также способствовало развитию горнорудного дела. Следствием этих факторов стало увеличение количества полезных ископаемых, извлекаемых людьми из земных недр .

    Период возрождения (с XV-XVII вв. до середины XVIII в.)

    Период был подготовлен эпохой великих географических открытий. Путешествия Колумба, Магеллана, Васко да Гама способствовали накоплению большого материала о всей поверхности Земли . Так, во время кругосветного путешествия Магеллана было окончательно доказано, что наша планета имеет шарообразную форму. Гипотезы ученых периода возрождения становятся настолько убедительными, подтверждаются такими неоспоримыми фактами, что церковь отступает перед наукой.

    В период возрождения Николай Коперник, Галилео Галилей и Джордано Бруно утвердили гелиоцентрическую модель мира .

    Как известно, в эпоху Возрождения происходит духовный подъем человечества. Хотя влияние церкви еще сохранялось, ее учения перестают быть единственным толкованием мира. Люди начинают верить науке.

    Поскольку города продолжали расти, техника развивалась, добыча богатств Земли становилась более быстрой и эффективной. Увеличилось и количество разрабатываемых месторождений.

    Конечно, во время добычи полезных ископаемых люди накапливали знания о свойствах горных пород, об особенностях их залегания, о строении земной коры. Обобщение этого материала приводило к важным теоретическим выводам.

    Среди людей, внесших вклад в геологию во времена периода возрождения, следует выделить немецкого ученого Георга Бауэра (или Агриколу). Он обобщил все достижения горняков Западной Европы. Ученый описал способы прокладки шахт, их особенности. Также Агриколой впервые было установлено отличие минералов от горных пород. Ученый описал свойства множества минералов, что позволило другим геологам определять минералы. Агрикола занимался и изучением кристаллов.

    Знаменитый Леонардо-да-Винчи тоже внес в науку, некоторые геологические сведения. Например, он высказал идею о том, что горные породы могут располагаться пластами, залегающими горизонтально, или в виде складок. Также Леонардо считал находки древних вымерших организмов действительно их останками, а не игрой природы, в противоположность ученым схоластического периода.

    В период возрождения вклад в геологию внесла Россия. Поиск месторождений широко организовывался правительством. В 1584 г. был создан приказ Каменных дел. В пределах Российской империи добывалось множество полезных ископаемых. Они также экспортировались в другие страны.

    Датчанин Нильс Стено основал стратиграфию и открыл первый закон кристаллографии о постоянстве углов кристаллов, сделал первое научное обобщение-сводку по земному магнетизму .

    Закончился донаучный этап развития геологии. Уже было накоплено достаточно материала о Земле. Его необходимо было лишь обобщить и дополнить теоретическими выводами. В научный этап, вооружившись новыми технологиями, духовными силами человечество стало решать эту задачу. Но конечно, донаучный этап развития геологии не мог мгновенно смениться научным. Поэтому в ее истории выделяют также переходный период.

    1.2 Переходный период (вторая половина XVIII в.)

    Переходный период в развитии геологии характеризуется тем, что в это время одновременно встречаются как старые учения донаучного периода, так и научные обобщения. Накопленные донаучным этапом геологические знания систематизируются и, таким образом, в переходный период происходит становление геологии как науки.

    Важным отличием переходного периода от донаучного стало то, что в это время в геологии утвердилась идея об изменчивости мира, тогда как раньше большинство ученых считало, что мир всегда существовал в неизменном виде. Идею развития Земли высказывали многие ученые переходного периода, но в первую очередь она связана с именами Ж. Бюффона, И. Канта и М.В. Ломоносова. В своих трудах они рассматривали всю историю Земли, от ее происхождения и до современного состояния, как единую картину мира. По мнению этих ученых Земля постоянно изменялась .

    Достижением геологии стала классификация диагностических признаков минералов, разработанная Вернером. Он также исследовал рудные полезные ископаемые и предложил систему стратиграфической последовательности горных пород. В развитии теоретической геологии ученый сыграл скорее отрицательную роль: он разработал схему формирования горных стран на идеях нептунизма.

    В противоположность А.Г. Вернеру Джеймс Геттон доказывал теорию плутонизма, говоря о решающем значении в формировании Земли ее внутренних сил .

    Ученый И. Кант в 1755 г. выдвинул гипотезу происхождения Солнечной системы. Согласно ей элементарные частицы первоначально рассеянные во Вселенной, собирались в сгустки под действием взаимного притяжения. При сжатии и раскаливании одного из сгустков вещества образовалось Солнце. Вокруг него собрались туманности, в которых возникли планеты, в т.ч. Земля. Ж. Бюффон создал гипотезу развития Земли. Он считал, что когда наша планета затвердела, она покрылась океанами. Благодаря движениям вод в них образовались неровности дна. Возвышенности стали материками при отступании воды. Период существования Земли Бюффон определял в 75 тыс. лет. Сейчас нам кажется, что это очень малый срок, однако богословы подвергли критике гипотезу Бюффона, т.к. по библейскому учению Земля существует 6000 лет .

    Итак, к началу XIX века геология сформировалась как наука. Следующий этап ее развития - научный, пополнил знания людей о Земле новейшими сведениями.


    Героический период (первая половина XIX века)

    С началом периода связано появление биостратиграфического метода. Он позволял определять относительный возраст горных пород по сложности устройства находящихся в них останков древних организмов (данный метод подробнее описан мной в п. 2.1 настоящей работы).

    В качестве самостоятельной дисциплины в геологии выделилась палеонтология. (см. п. 1.4.).

    В начале XIX века К.Л. фон Бухом была выдвинута первая тектоническая гипотеза. В ней ученый рассматривал вулканизм, как ведущий процесс, формирующий горы. Гипотеза была подтверждена исследованиями А. Гумбольдта. Ее приняли многие ученые, и она играла важную роль в представлении людей о горообразовательных процессах.

    Сведения, полученные о химическом составе минералов и о законах образования их кристаллов, позволили к концу героического периода создать химическую классификацию минералов. Эта классификация длительное время составляла основу минералогии.

    В конце героического периода в геологию был внесен еще один важный вклад. Представители стратиграфии заметили, что в некоторых слоях горных пород между организмами, относящимися к разному геологическому времени, не обнаружена эволюционная связь. Т.е. у одних организмов не могли найти предков, у других потомков. Чтобы объяснить эти факты, ученые создали теорию катастроф. Теория включала в себя идею существования в истории Земли многочисленных катастроф, которые, по мнению ученых, периодически полностью уничтожали жизнь на планете, затем она возникала заново. Ч. Лайель впервые возразил против этого в своем труде «Основы геологии…» (1830-1833 гг.). Он писал, что органический мир развивался на Земле последовательно и постоянно. Однако идеи ученого были подтверждены и приняты лишь спустя 20 лет .

    В героический период геологами была решена еще одна задача. Давно стоял вопрос происхождения странных валунов, районы распространения которых удалены на тысячи километров от мест их находок. Объяснить этот факт позволила ледниковая теория, которая предполагала влияние многочисленных оледенений на земную поверхность. Впоследствии эта гипотеза не только доказала перенос валунов ледниками, но и была подтверждена сама, а эпохи оледенений стали считать частью истории Земли.

    Итак, героический период недаром получил свое название. Геология действительно достигла огромных успехов. Итогами периода стало создание первых геологических обществ, национальных геологических служб в России, Англии, Франции. Также характерными для этого периода стали большой масштаб исследований и более организованный характер их проведения .

    Геология стала самостоятельной дисциплиной естествознания. Появилась новая профессия - геолог.

    Классический период (вторая половина XIX века)

    В начале классического периода появилась книга Ч. Дарвина «Происхождение видов путем естественного отбора…». Она подтверждала гипотезу Ч. Лайеля. Поскольку гипотеза эволюционного развития жизни стала подтверждаться и находками организмов, являющихся переходным звеном между теми формами жизни, которые раньше считались несвязанными друг с другом, то геологи, наконец, отказались от катастрофизма. Они приняли теорию эволюции.

    Период также характеризуется появлением гипотезы контракции, выдвинутой Эли де Бомоном. Ученый считал, что в процессе остывания Земли ее объем уменьшался, это приводило к появлению складок в земной коре. Так он объяснял происхождение гор. Кажущаяся внутренняя логичность гипотезы контракции и отсутствие ей альтернативы привело к тому, что эта идея закрепилась в геологии на весь классический период .

    В классический период возникло понятие о магме - жидком веществе, которое в некоторых случаях может образовываться в твердой земной мантии. В частности магма извергается через кратеры вулканов и, освобождаясь от газов, превращается в лаву. Дифференциацией магмы назвали процесс превращения ее в различные горные породы при застывании. Этим объяснялось происхождение многих горных пород.

    Хочется отметить, что во второй половине XIX века в связи с развитием промышленности во многих странах увеличился и объем добычи полезных ископаемых. Мировая выплавка стали выросла с 500 тыс. до 28 млн. тонн, в 3 раза больше стала мировая добыча угля. Поскольку все страны нуждались в еще большем количестве минерального сырья, то их правительства выделяли большие средства на развитие геологии. Следствием этого стало появление геофизики, которая позволила изучать глубинное строение нашей планеты .

    Можно также выделить, что в классический период многое было сделано для изучения геологического строения России. В 1882 г. был основан Геологический комитет России.

    В классический период произошло значительное развитие петрографии. В руках специалистов о горных породах появился поляризационный микроскоп. С его помощью изучали тончайшие прозрачные пластинки горных пород - шлифы (оптическая петрография).

    Из минералогии как самостоятельная дисциплина выделилась кристаллография.

    Также было положено начало геологии нефти. Ее стали рассматривать как полезное ископаемое, были созданы гипотезы ее образования .

    Таким образом, классический период развития геологии принес этой науке много пользы. Геология стала играть важную роль среди естественных научных дисциплин.

    Следующий период развития геологии - «критический», стал переломным этапом в развитии естествознания в целом. Почва для совершенных в «критический» период открытий была подготовлена геологическими достижениями классического периода.

    «Критический» период» (первая половина XX века)

    Этот период развития геологии, не случайно получил такое название. Стоит отметить, что его становление как «критического» периода обусловлено многочисленными новыми открытиями в разных областях науки. Это и успехи в познании микромира, и открытие рентгеновского излучения, естественной радиоактивности. Все это оказывало существенное влияние и на геологию .

    В начале периода произошло крушение гипотезы контракции. Вместо нее появились другие тектонические гипотезы. Наиболее соответствующей современным представлениям о Земле стала гипотеза дрейфа континентов, предложенная А. Вегенером. Она подразумевала, что земная кора состоит из целостных блоков - литосферных плит, которые двигаются относительно друг друга, а вместе с ними и материки (см. рис. 1). Гипотеза играла очень важную роль в геологии. Она объясняла процессы горообразования смятием земной коры при столкновении литосферных плит. Также этим объяснялись землетрясения и вулканизм. Гипотеза находила подтверждение в том, что горные области зоны землетрясений и вулканизма почти всегда совпадают - они соответствуют границам литосферных плит. Также гипотезу подтверждало и то, что восточное побережье Южной Америки соответствовало западному берегу Африки, т.е., если убрать Атлантический океан, приблизив Африку к Южной Америке, они бы составили единый континент, который и образовал эти материки, расколовшись в прошлом.

    Однако, несмотря на такие веские доводы в пользу правильности гипотезы, она подвергалась критике и долго не принималась в геологии. Из-за неправдоподобности гипотеза была отклонена . Основной же стала ундационная гипотеза. Она подразумевала формирование рельефа за счет вертикальных движений в земной коре .

    В «критический» период происходит выделение геотектоники в отдельную научную дисциплину. Она оказала большое влияние на развитие теоретической и прикладной геологии. Раздел этой дисциплины учение о геосинклиналях - подвижных поясах на границах литосферных плит, также продолжал развиваться, объясняя многие особенности Земли.

    В.А. Обручев, С.С. Шульц, Н.И. Николаев стали основателями геотектоники - дисциплины, изучающей тектонические движения недалекого прошлого и современности.

    При помощи геофизических методов была создана модель оболочного строения Земли. В ней выделили ядро, мантию, земную кору. Как мы знаем, эти геосферы выделяются и современными учеными.

    В петрографии стало интенсивно развиваться физико-химическое направление исследований и, как следствие, возникла кристаллохимия. Для изучения кристаллов стал применяться рентгеноструктурный анализ.

    Продолжала развиваться геология горючих полезных ископаемых. Также появилось мерзлотоведение. К концу «критического» периода были составлены геологические карты разных территорий, были написаны труды, обобщающие геологические материалы для некоторых территорий.

    Увеличилась потребность в полезных ископаемых, стали добываться и применяться новые их виды - урановые руды, нефть. Для поиска месторождений разрабатывались новые методы .

    Новейший период (1960-1990-е гг.)

    В начале новейшего периода произошло техническое перевооружение геологии. Появились электронный микроскоп, электронно-вычислительные машины, масс-cпектрометр (определитель массы химических элементов). Стало возможным глубоководное бурение, изучение Земли из космоса.

    Важным стало то, что Землю смогли исследовать, сравнивая ее с другими планетами. Также появилась возможность определения абсолютного возраста горных пород.

    Значительных успехов достигла палеонтология - выведены новые группы ископаемых останков, закономерности развития живых организмов, выделены великие вымирания в истории биосферы.

    В новейший период ученые стали решать некоторые проблемы геологии, например, вопросы минералогии, в лаборатории с помощью экспериментов.

    Были открыты законы метасоматической зональности (особенностей залегания минералов, видоизмененных при взаимодействии с водными растворами) и создана теория различных типов литогенеза (пути превращения горных пород в метаморфические). Также в новейший период были созданы тектонические карты Евразии и палеогеографические карты мира.

    В новейший период были приняты и продолжили развитие идеи мобилизма, в т.ч. гипотеза дрейфа континентов.

    Палеонтологи выявили самые ранние этапы развития жизни на Земле.

    С возникновением экологических проблем связано появление геотехнологии - науки, решающей задачи рационального использования недр нашей планеты. Также появилась экологическая геология.

    В новейший период был разработан механизм спрединга. Он включал идею о том, что новая океаническая кора образуется в зонах выхода и застывания магмы. Таким зонам соответствуют срединно-океанические хребты. Затем новая кора продвигается к континентам и на границе континентальной земной коры заходит под нее. В этих местах образуются глубоководные желоба, а на континентах часто происходит образование гор .

    Геология новейшего периода мало отличается от современной. Но на этом ее развитие не остановилось, оно продолжается в настоящем и будет продолжаться в будущем.

    Как вывод к истории геологии я хочу выделить основные разделы науки, сформировавшиеся к настоящему времени.

    .4 Разделы геологии

    К настоящему времени в геологии сформировались следующие основные разделы.

    1. Динамическая или физическая геология. Этот раздел изучает современные геологические явления, изменяющие Землю на глазах людей (атмосфера, вода, флора и фауна, вулканизм).

    . Петрография или наука о горных породах. Этот раздел уже почти достиг размеров самостоятельной науки, ведь изучение свойств горных пород важно для их применения.

    . Палеонтология - наука об ископаемых живых организмах, составляет третий раздел геологии. Он изучает развитие, происхождение древних живых существ и даже восстанавливает их среду обитания.

    Изучением последовательности и условий залегания различных горных пород, а также следов жизни в них занимается стратиграфия . Она относится к четвертому разделу геологии. Подразделяясь на петрографическую и палеонтологическую, стратиграфия занимает важное место в геологии - она охватывает изучение сразу множества закономерностей на Земле. О стратиграфии подробнее написано в п. 2.1. настоящей работы.

    . Историческая геология составляет пятый раздел науки о Земле. Она как бы подводит итоги всем исследованиям нашей планеты: распределяет геологические памятники, процессы и явления во времени.

    Это основные разделы геологии. Они в свою очередь подразделяются на множество более мелких направлений, изучающих либо разные стороны вопроса, касающегося основного раздела, либо исследующих его разными методами .

    Итак, описана история развития геологических наук. С ее помощью сформировано представление о геологии, выделены основные идеи и положения этой науки.

    2. Методы исследования

    Сейчас я опишу методы, с помощью которых геология изучает Землю. Понять их очень интересно и важно. Хочу также заметить, что названия многих методов совпадают с названиями различных разделов геологии, которые их применяют.

    .1 Определение относительного возраста горных пород

    Чтобы изучать прошлое планеты и развитие жизни на ней необходимо уметь определять какие горные породы образовались на Земле раньше, какие - позже. Для этого существуют самые различные способы.

    Первоначально датчанин Нильс Стено выдвинул принцип: «Слой, лежащий выше, образовался позже слоя, лежащего ниже». Отраслью геологии, изучающей последовательность образования и закономерности размещения горных пород, используя этот и другие принципы, стала стратиграфия. Это одна из основных отраслей геологии.

    Однако у принципа Стено имеются и свои недостатки. Например, невозможно сопоставить возраст пород, лежащих в разных местах. Позже и эта проблема была решена. Ученые заметили, что живые организмы устроены тем сложнее, чем они моложе. Так, сопоставляя особенности строения их останков в горных породах, определяют какие организмы, а следовательно и породы, более молодые. Теперь даже при перемешивании пластов горных пород можно определить первоначальную последовательность их залегания (см. рис. 2).

    В настоящее время ученые выбрали для каждого периода в истории Земли наиболее характерные формы жизни. Их останки называют руководящими ископаемыми. По ним точно определяют последовательность накопления горных пород.

    Благодаря этим открытиям была составлена геохронологическая шкала, в которой история Земли разделена на эоны, эры, периоды и эпохи. Шкала общепринята, используется повсеместно и важна для многих отраслей науки. Однако в ней первоначально указана лишь последовательность периодов. Их длительность, даты начали и конца были установлены при помощи изотопного метода определения абсолютного возраста горных пород .

    .2 Определение абсолютного возраста горных пород

    Как определить возраст одних горных пород относительно других, геологи уже поняли. Но еще одна задача была не решена - определить, сколько лет существуют те или иные горные породы. С развитием ядерной физики люди научились при помощи новейших приборов определять абсолютный возраст горных пород.

    Суть изотопного метода (так называется способ определения абсолютного возраста горных пород) заключается в следующем. Установлено, что нестабильные изотопы химических элементов распадаются и превращаются в более легкие стабильные атомы. Причем скорость этого распада почти не зависит от внешних условий. Так по количеству нестабильного элемента и по количеству продуктов его распада определяют, насколько сильно распался элемент. В некоторых случаях определяют не количество продуктов распада, а количество треков - областей, выжженных в породе осколками ядер нестабильного изотопа. Это позволяет узнать число делений ядер. Зная всегда постоянную скорость распада, определяют, когда он начался, а значит и как давно образовалась порода.

    Самым точным является радиоуглеродный метод, при котором используется распад нестабильного изотопа углерода с атомной массой 14. Период его полураспада - достаточно короткий промежуток времени - 5768 лет. Но поскольку за время равное десяти периодам полураспада эффективность течения реакции снижается в 1024 раза, то становится затруднительно зарегистрировать такие малые изменения вещества. Поэтому время, измеряемое этим методом, не превышает 60 000 лет. В этом промежутке возраст определяется наиболее точно.

    При помощи радиоуглеродного метода определяют возраст органических останков, поскольку живые организмы при жизни поглощают углерод из атмосферы. В ней содержание изотопов углерода постоянно, т.к. поддерживается образованием C14 при помощи космической радиации. А после смерти организма нестабильный углерод начинает распадаться .

    Для определения количества изотопов углерода часто применяют метод масс-спектрометрии (см. рис. 3). В этом случае содержащийся в образце углерод окисляют, превращая его в углекислый газ. Затем молекулы газа превращают в ионы и пропускают через магнитную камеру. В ней CO2 с легким углеродом откланяется сильнее, чем газ с тяжелым изотопом. Регистрируя отклонения от прямолинейной траектории, определяют, сколько в веществе осталось нестабильных тяжелых изотопов. Чем меньше осталось нестабильных атомов, тем древнее образец, возраст которого определяют. В годах это рассчитывают при помощи специальных формул.

    Период полураспада урана с атомной массой 238 - 4,51 млрд. лет. Поэтому ураново-свинцовый метод (свинец - продукт распада урана) позволяет датировать древнейшие события, хотя при этом и снижается точность измерений. Технология метода заключается в следующем. Среди пород, возраст которых необходимо определить, отбираются те, которые содержат циркон - ураносодержащий минерал. Затем породу измельчают до кристаллов и их просеивают через специальные сетки, что бы отделить кристаллы одного размера. При погружении этих кристаллов в растворы высокой плотности, самый тяжелый из кристаллов - циркон оседает на дно. Его выбирают и слоем в один кристалл наклеивают на специальную пластинку. Затем кристаллы на пластинке шлифуют и опускают в раствор кислоты. При этом вещество внутри треков растворяется, и они становятся видными через микроскоп. Затем количество треков в единице площади подсчитывают. В годах возраст определяют по специальным математическим формулам. При этом учитывают и уменьшение скорости распада со временем.

    Изотопный метод в настоящее время является наиболее точным, но существуют и другие способы определения абсолютного возраста горных пород. Например, определив скорость накопления осадочных горных пород и зная толщину их слоя, приблизительно оценивают и время образования этих пород. Но ведь скорость накопления пород может меняться, а слой их способен сжиматься и, потому подобные методики недостаточно точны.

    2.3 Спектральный анализ

    Люди давно заметили, что разные химические элементы, помещенные в пламя, окрашивают его в разные цвета (см. рис. 4). Например, медный купорос - в зеленый, поваренная соль - в ярко-желтый. Однако точно определить химические элементы по цвету огня невозможно, т.к. некоторые из них дают одинаковый цвет.

    В 1859 г. немецкие ученые химик Роберт Бунзен и физик Гистаф Кирхгоф нашли способ различать оттенки цветов пламени. Они воспользовались своим изобретением - спектроскопом. Он представляет собой стеклянную призму, помещенную перед белым экраном. Призма раскладывает луч света на монохроматические лучи, благодаря чему видны различия между спектрами элементов, которые визуально одинаково окрашивают пламя.

    Вообще, спектральный анализ оказался важен как для геологов, так и для представителей новой науки, им же и порожденной - космохимии .

    2.4 Гравиразведка

    Вес - это та сила, с которой тело, притягиваясь к Земле, давит на опору или оттягивает подвес. Оказывается, даже притяжение тел к Земле используют в геологии.

    Любое тело, обладающее массой, обладает притяжением. Мы очень хорошо наблюдаем это, ведь земная гравитация и есть сила притяжения Земли. Но, если все тела притягиваются друг к другу, тогда почему мы не замечаем, например, притяжения между двумя людьми? Дело в том, что эти силы очень малы, но все-таки они существуют. Экспериментальным путем доказано, что отвес отклоняется от вертикального положения вблизи большой горы. Так же установлено, что два больших свинцовых шара на близком расстоянии катятся друг к другу .

    В соответствии с эти можно сделать вывод, что в зависимости от плотности пород, залегающих под землей, будет меняться и величина силы тяжести (в физике - ускорение свободного падения). Но проблема в том, что эти изменения очень малы, и человек их не замечает. Только при помощи точных приборов можно установить изменения притяжения.

    Первоначально силу тяжести определяли по периоду качания маятника и его длине. Однако, в связи с неудобством применения маятника, его заменили более удобным прибором - гравиметром. Его принцип действия прост: на пружинку подвешен массивный груз и по степени ее закрученности определяют силу тяжести.

    Сейчас метод гравиразведки применяется повсеместно для поиска месторождений нефти (над пустотой в земле притяжение меньше) и месторождений очень плотных минералов, например, руд железа. Метод чрезвычайно прост и недорог, а для исключения ошибок его часто применяют вместе с другими методами. Составлены карты гравитационного поля Земли.

    При помощи измерения силы тяжести ученые изучают вопросы, связанные с формой Земли и строением ее недр .

    2.5 Применение окаменелостей

    Находки палеонтологов, следы прежних форм жизни, могут рассказать не только о развитии живых организмов, их строении, но и еще о многих закономерностях их формирования, об окружающей их среде и ее свойствах.

    Например, зная, что растительность различных климатических поясов неодинакова, ученые, изучая останки древних растений, делают выводы о климате той или иной местности в прошлом. А зная условия жизни современных сообществ живых организмов (температура, количество потребляемой пищи, грунт) можно определить условия среды обитания подобных им сообществ в прошлом. Так же, изучая ритмичность роста некоторых организмов (кораллов, двухстворчатых и головоногих моллюсков, усоногих раков и др.) определяют скорость вращения Земли, периодичность приливов, наклон земной оси, частоту штормов и многое другое. К примеру, установлено, что 370-390 млн. лет назад в году было примерно 385-410 дней, значит, Земля вращалась вокруг своей оси быстрее, чем сейчас.

    На практике для поиска месторождений нефти применяют зависимость цвета останков конодонтов (живых организмов) от температуры недр, где они залегали. Если температура была до 250°С, то из органических веществ не могла образоваться нефть. Если же температура была больше 800°С, то нефть которая могла там существовать разрушилась. Но если температура была между этими пределами, то поиск нефти можно продолжить.

    По особенностям состава останков морских организмов можно определить температуру и состав воды в определенное время. А исходя из всех этих данных, можно дальше выводить закономерности, существующие в мире, и применять их во всех областях науки .

    2.6 Биогеохимический метод

    Биогеохимический метод основан на изучении особенностей растений, обусловленных присутствием определенных минералов в земной коре.

    Люди еще до открытия современных методов поиска полезных ископаемых пользовались тем, что у растений, растущих над разными рудами, появляются свои особенности. Например, определенные виды мхов, мяты и гвоздичных, растущие в большем, чем обычно количестве, указывают на наличие в недрах земли меди. А месторождения алюминия, вызывающие повышенное содержание этого металла в почве, приводят к укорачиванию корней и пятнистости листьев. Никель приводит к появлению белых мертвых пятен на листьях. Так, люди, визуально наблюдая растения, успешно открывали месторождения необходимых им горных пород.

    В XX веке биогеохимический метод стал применяться еще более успешно: появилась возможность выявлять аномалии растительного мира с помощью аэрофотосъемки, начали применять спектроскопию для определения повышенного содержания минералов в растениях, свидетельствующего об их избытке в почве. Преимуществом метода является возможность нахождения руд, залегающих на значительных глубинах.

    В настоящее время для упрощения биогеохимического метода созданы списки растений индикаторов с известной реакцией на определенные минералы. Более 60 растений из списка проверены и с их помощью можно искать почти все виды ископаемых металлов. Многие месторождения уже открыты с применением данного метода .

    2.7 Сейсмометрия

    В начале ХХ века один из основоположников сейсмологии Борис Борисович Голицын писал: «Можно уподобить всякое землетрясение фонарю, который зажигается на короткое время и освещает внутренность Земли». Действительно, скрытые от нас многокилометровыми толщами горных пород земные недра, поддаются исследованию в основном во время землетрясений. Ведь даже при помощи бурения в земную кору не проникают дальше 12 км.

    Для изучения недр используют возникающие при землетрясении сейсмические волны. Применяется особенность распространения волн с разной скоростью в веществах с разными свойствами (либо через разные агрегатные состояния одного вещества), а на границе разных веществ волны либо отражаются, либо искажаются. Если источник сейсмических волн расположен вблизи поверхности Земли, то многие волны, отражаясь от нижележащих слоев возвращаются к поверхности, где их фиксируют сейсмоприемниками. Эти приборы во много раз усиливают ничтожно маленькие колебания почвы. Зная время распространения волн и учитывая их свойства делают вывод о расположении отражающих поверхностей, узнают глубину их залегания, угол наклона и структуру. Причем источником сейсмических волн часто используют искусственный взрыв, т.к. тогда точно известно время начала движения волн.

    В сейсморазведке регистрируют преломленные и отраженные волны. Первые из них более сильные. При этом и методы их исследования различны.

    Отраженные волны сразу дают подробный разрез изучаемого участка. Впервые при помощи отраженных волн удалось обнаружить нефтяные месторождения в 30-х годах ХХ века. После этого сейсморазведка стала ведущим методом в геофизике. Чтобы составить полное представление о строении недр Земли колебания регистрируют одновременно во многих местах.

    Метод преломленных волн также успешно совершенствовался. С их помощью стало возможным проводить исследования на больших глубинах. Геологи смогли изучать строение земной коры, особенности формирования материков и океанов, причины тектонических движений.

    С появлением цифровой обработки сигнала в 60-х годах анализ сейсмологической информации стал более полным и быстрым. Также ученые заменили источник сейсмических волн с взрывчатки на экологически безопасные и позволяющие выбирать частоту колебаний вибраторы.

    Сейсморазведка имеет огромное значение в геологии. В основном с ее помощь определены геосферы Земли, их толщина, состояние вещества в них.

    .8 Магниторазведка

    Земля, подобно гигантскому магниту окружена магнитным полем. Оно простирается в пространстве на 20-25 земных радиусов. О происхождении магнитного поля Земли до сих пор идут споры. Т.к. оно может возникнуть либо под действием электричества, либо намагниченного тела, выдвигают гипотезу, согласно которой поле земли возникает из-за электрических токов, появляющихся в земном ядре при вращении планеты.

    Но, независимо от происхождения, поле оказывает огромное влияние на обитателей Земли - оно защищает от космической радиации. Также именно благодаря полю стрелка компаса ориентируется на север. Замечено, что северный конец стрелки компаса склоняется вниз по отношению к горизонтальному положению. Это наводит на мысль, что источник магнетизма находится в земных недрах.

    Изучение явлений, связанных с магнитным полем помогает понять строение нашей планеты, частично узнать ее историю, выяснить связь Земли с космосом.

    Замечено, что намагниченные горные породы также влияют на ориентацию стрелки компаса. Благодаря этому магнитные аномалии (отклонения от нормального поля Земли) используют при поиске полезных ископаемых, имеющих большую намагниченность (железосодержащие минералы). Уже в XVII веке в России и Швеции для поиска железных руд использовали компас. Позднее был создан более точный прибор, определяющий изменения магнитного поля Земли и его силу - магнитометр (см. рис. 6).

    Изучая остаточную намагниченность горных пород, которая была ими приобретена под действием магнитного поля Земли в прошлом, ученые определяют положение магнитных полюсов и силу магнитного поля Земли в древнейшие геологические периоды. Например, установлено, что раньше на месте современного северного полюса был южный и наоборот. Предполагают, что во время их смены магнитное поле ослабевает, космическая радиация проникает на Землю, что отрицательно влияет на ее обитателей.

    Магниторазведка важна для людей не только поиском полезных ископаемых. С ее помощью составляют специальные карты магнитного склонения (отклонение стрелки компаса от северного направления в градусах). Это важно для точного ориентирования на местности .

    2.9 Электроразведка

    Электроразведка - это раздел геофизики, определяющий состав и строение земной коры с применением естественных или созданных искусственно электрических токов. Этот способ разведки насчитывает, пожалуй, наибольшее число разнообразных методов и их разновидностей - более 50.

    Вот основные из них:

    . Метод сопротивлений - основан на пропускании через землю постоянного тока при помощи двух электродов. Затем измеряют напряжение, вызванное этим током, другими электродами. Зная силу тока и напряжение рассчитывают сопротивление. По сопротивлению узнают какие породы его вызывают (разные породы имеют различное сопротивление). А учитывая расположение электродов, узнают в каком месте находятся породы, обладающие высоким сопротивлением.

    При помощи метода сопротивлений рассматривают слои, составляющие исследуемый участок, их распределение. В частности возможен поиск месторождений нефти и газа.

    Для индукционного метода используют искусственно созданное переменное электрическое или магнитное поле. Под его воздействием в земле возникает электромагнитное поле. Зная параметры созданного поля и фиксируя свойство поля, возникшего в земле, определяют какой по свойствам средой оно испускается и где она расположена. Источник искусственного поля можно перемещать и тогда картина недр становится более подробной. Способы обработки данных, полученных индукционным методом, очень сложны.

    Отдельно выделяют электроразведку скважин . Для нее применимы как названные выше методы, так и многие другие. Это и радиоволновое просвечивание, и изучение естественного электрического поля, и метод погружных электродов. Электроразведка скважин позволяет определить форму, размер и состав горных пород в пространстве около скважин и в них самих .

    2.10 Определение месторождений по космическим снимкам

    С появлением возможности получения фотографий обширных участков земной поверхности из космоса, геологи смогли выявить связь между внешним видом, формой различных интрузий и их составом.

    К примеру, замечено, что горные породы, содержащие апатит, часто выходят на поверхность в форме «колец» и «бус». Эту закономерность можно наблюдать в форме наших Хибинских гор - они представляют собой полукольцо, в котором находятся богатейшие залежи апатит-нефелиновых руд. Меднопорфировые месторождения также связаны со специфичными видами массивов, которым даны специальные названия: «дракон», «пень» и «корень».

    Изучение космических снимков древних и современных вулканов также позволяет находить месторождения полезных ископаемых.

    Таким образом, с появлением нового метода исследования существенно расширились возможности геологии. Теперь геологи могут судить о распространенности месторождений в масштабах планеты. А также экономятся время и силы ученых: сначала выясняется местоположение возможного месторождения, затем туда снаряжается экспедиция, в то время как раньше приходилось сложными методами непосредственно изучать всю поверхность земли. Увеличилась и вероятность нахождения месторождений.

    2.11 Что можно узнать, изучая гальку

    Изучая обычную речную гальку, можно выявить много интересного. Ученые могут определить откуда галька начала свой путь. Если в гальке содержатся полезные ископаемые, она может привести к их месторождениям. При сохранении у гальки первоначального контура можно определить условия ее формирования. Рассчитывая скорость движения гальки, скорость уменьшения ее веса, степень окатанности, определяют и расстояние, пройденное ей. Для этого выведены специальные формулы. По тому, как ориентирована галька, находят направление движения несуществующего ныне водного потока, а по углу наклона гальки определяют скорость его движения .

    3. Место, занимаемое геологией в современном мире

    .1 Связь геологии с другими науками

    Сейчас, когда методы исследования, применяемые в геологии, описаны, я бы хотел уделить внимание связи геологии с другими науками.

    Связь между различными науками очень важна. Совместными усилиями ученые лучше познают мир. Взаимосвязь проявляется в двух видах. 1.) Готовые данные, полученные одной наукой, принимаются и используются другой наукой. Например, таблица Менделеева используется почти всеми естественными науками как аксиома. 2.) Постоянное применение методов исследования одной науки в другой. Например, использование методов физики в геологии, когда среда или явление не поддается непосредственному наблюдению.

    Связь между науками часто двухсторонняя. Примеров успешного взаимодействия различных наук с геологией существует множество. Некоторые из них я приведу.

    Для изучения эволюции живого, биология обращается к находкам палеонтологии - ископаемым остаткам. Это разумно, т.к. необходимо знать строение организмов на разных этапах эволюции, что бы понять как они все лучше приспосабливались к окружающей среде, как природа выбирала и сохраняла наилучшие формы жизни. Вопрос о происхождении человека биологи тоже решают совместно с палеонтологами, анализируя останки предков людей.

    С другой стороны, переработка полезных ископаемых может производится с помощью биологических методов. Известно, что золото часто включено в кристаллическую решетку минералов в очень малых количествах и его сложно извлечь. Тогда на помощь приходят бактерии. Они разрушают кристалл минерала и таким образом золото извлекается.

    Для поиска полезных ископаемых с помощью биогеохимического метода используют особенности растений, изученные ботаниками .

    Часто бывает, что гипотеза, выдвинутая специалистами одной научной области, находит подтверждение в других областях. Взаимодействие наук также важно для подтверждения и сопоставления результатов исследований, так как разностороннее изучение какого-либо вопроса более эффективно.

    Поэтому для получения ответов на важные вопросы должны чаще проводиться совместные исследования представителей разных наук, тогда точнее и полнее будут результаты исследований.

    .2 Значение геологии в современном мире

    Как вывод ко всему сказанному, я бы хотел добавить о значении геологии в современном мире.

    Геология - одна из немногих наук, рассматривающая последовательность, длительность событий. Таким образом, она оказывает влияние на (духовное) представление о мире у людей: об обитателях Земли, облике нашей планеты в прошлом. Геология помогает человеку понять, как Природа создала современные сообщества организмов, как в прошлом накапливались используемые сейчас полезные ископаемые и каково место человека среди современной биоты. Обладая такими знаниями, человек делает вывод как важно уберечь Землю и жизнь на ней от загрязнений, сохранить и рационально использовать полезные ископаемые.

    Итак, значение геологии велико для духовного развития человека.

    Велика ее роль для обычного человека и просто в быту. Ведь полезные ископаемые добывают при помощи геологических методов. А уж роль полезных ископаемых в жизни человека сложно переоценить: с помощью угля и продуктов переработки нефти производится отопление домов в городах, на бензине ездят автомобили, природный газ используется для приготовления пищи, при помощи урана, нефти или угля вырабатываются всем необходимое электричество. Также почти все, созданное человеком, - дома, машины, дороги, ювелирные украшения, стекло - сделаны из природных материалов, добываемых в земле.

    Геологическими достижениями пользуются люди самых различных профессий. Геокриология - раздел геологии, изучающий многолетнюю мерзлоту. Строители используют полученные ей данные для разработки норм и правил строительства в районах распространения мерзлоты.

    Для правильного ориентирования на местности необходимо знать отклонение стрелки компаса от северного направления, что происходит из-за несовпадения географического и магнитного полюсов. Такие особенности магнетизма выявлены при помощи магниторазведки. Этот раздел геологии изучает не только поиск полезных ископаемых по магнитным аномалиям, но и магнитное поле планеты в целом.

    По карте литосферных плит каждый человек может определить в каких областях часты землетрясения и извержения вулканов (таким областям соответствуют границы литосферных плит) и, например, при переезде, выбрать наилучшее место жительства или заранее подготовится к тектонической активности.

    Таким образом, геология очень важна для всего человечества. От ее достижений напрямую зависит и развитие человеческого общества в техническом отношении.

    4. Будущее геологии

    В заключение к данной работе я хочу написать о будущем геологии.

    Представить будущее любой науки достаточно сложно. Ведь необходимо сохранить объективность и не углубляться в область фантастики.

    В настоящее время некоторые люди выдвигают мнение о том, что геология в будущем не нужна, т.к. содержание полезных ископаемых в земной коре уменьшается и вскоре они могут закончиться. Для удовлетворения человечества в минеральном сырье, считают они, будет применяться метод извлечения из огромных объемов горных пород ничтожных долей искомого вещества.

    Однако предлагаемый метод комплексного извлечения минералов из горных пород имеет многочисленные недостатки.

    Во-первых, сейчас ученые не располагают необходимыми технологиями (кроме примера с золотом и др.). Во-вторых, если бы данный метод применялся, то он был бы дорог и технически сложен. В-третьих, пришлось бы перерабатывать огромное количество материала с больших площадей планеты, что может привести к экологическим проблемам. В-четвертых, возникла бы проблема утилизации переработанных пустых пород.

    Итак, такой способ на данный момент не возможен и вряд ли будет возможен в будущем для добычи всех необходимых людям полезных ископаемых. Однако его применение для добычи отдельных минералов возможно. Также можно разработать способы извлечения таким способом новых минералов. Но применять метод необходимо с осторожностью, чтобы не нарушить экологию.

    Существует и другой взгляд на будущее геологии: следует совершенствовать способы поиска месторождений, методы добычи полезных ископаемых, разумно (экономично) расходовать ресурсы планеты, тогда минерального сырья должно будет хватать для человеческих нужд.

    На мой взгляд, в будущем должен применяться и способ комплексного извлечения минералов из горных пород, и должны быть усовершенствованы имеющиеся методы поиска и добычи полезных ископаемых.

    Также я считаю важным сохранение экологически благоприятной обстановки на планете, поэтому методы ведения исследований и непосредственно добыча полезных ископаемых в будущем должны наносить меньше вреда окружающей среде.

    По-прежнему стоит проблема рационального использования земных богатств. Это необходимо учитывать при разработке методов добычи полезных ископаемых, при которых у природы не будет браться ничего лишнего.

    Больше внимания необходимо уделить совместной работе геологии с другими науками, ведь часто использование косвенных методов физики, химии, математики помогает решать геологические задачи. Важно и увеличение точности геофизических методов, т.к. многие из них пока молоды и дают лишь приблизительные результаты.

    Также общество ставит перед геологией такие задачи, как предсказание и предотвращение стихийных бедствий. Этому надо уделить особое внимание, т.к. решение этих задач приведет к спасению множества человеческих жизней .

    В геологии имеется еще много проблем. Их решением непосредственно занимаются геологи. Например, невыяснено происхождение магнитного поля Земли, не установлено происхождение жизни, расположение и свойства геосфер Земли. Решение этих вопросов поможет человечеству более успешно использовать богатства нашей планеты.

    Заключение

    Я бы хотел, чтобы моя работа помогла юным геологам и просто людям, интересующимся геологией, сформировать представление об этой науке. В кратком и простом изложении материала мной выделены особенности геологии, ее достижения.

    Хотелось бы добавить, что геология очень интересна, а сведения о ней и предмете ее изучения - Земле полезны каждому человеку.

    Таким образом, цели и задачи настоящей работы выполнены: геология описана как наука, выделены основные задачи, изучаемые ей, описана история, методы исследования, разъяснено практическое значение науки, показана важность связи геологии с другими науками, рассказано о будущих перспективах развития геологии.

    Литература

    1. Большая российская энциклопедия

    2. Ваганов П.А. Физики дописывают историю. - Ленинград: Изд-во Ленинградского университета, 1984. - С. 28 -32.

    3. История геологии. - Москва, 1973. - С. 12-27.

    Курс общей геологии. - Ленинград «Недра» Ленинградское отделение, 1976.

    5. Перельман Я.И. Занимательная физика, книга 1. - Москва «Наука» Главная редакция физико-математической литературы, 1986.

    6. Энциклопедия для детей. Т. 4. Геология. - 2-е изд. перераб. и доп. / Глав. ред. М.Д. Аксенова. - М.: Аванта+, 2002.

    Журнал «Техника-молодежи», 1954, №4, с. 28-27