Open
Close

Как избавляться от иррациональности. "Освобождение от иррациональности в знаменателе дроби" (8 класс)

Урок №1 Тема урока: «Освобождение от иррациональности в знаменателе дроби»

Цели:

Образовательная:

Развивающая:

Воспитательная: воспитание последовательности в своих действиях.

Тип урока: изучение нового

Стандарт урока:

    уметь находить способ избавления от иррациональности

    понимать смысл «сопряженное выражение»

    уметь избавляться от иррациональности в знаменателе.

Оборудование: карточки к самостоятельной работе.

Ход урока

Немного юмора:

Извлекать корни умеешь? – спрашивает учитель

Да, конечно. Нужно потянуть за стебель растения посильнее, и корень его извлечётся из почвы.

Нет, я имел в виду другой корень, например, из девяти.

Это будет «девя», так как «ть»-суффикс.

Я имею в виду корень квадратный.

Квадратных корней не бывает. Они бывают мочковатые и стержневые.

Арифметический квадратный корень из девяти.

Так бы и сказали! Квадратный корень из девяти =3!

А вы корни извлекать умеете?

2. «Повторение – мать учения».

(8 мин)

2.Проверка дом/з № 168 1)4; 2)10; 3)4;4) 8

3.Разминка. Выполни действия (Слайд 1). Проверка по кругу против часовой стрелки.

1. Подбери неизвестный множитель (Слайд2)

Деление на группы: по выбранным фигурам.

Проверяют в парах сменного состава.

Работают индивидуально и проверяют, оценивая в баллах.

(Приложение 1)

3. «Книга – книгой, а мозгами двигай» (5 мин)

(Слайд 3) Два друга решали уравнение
и получили разные ответы. Один из них подобрал х = , сделал проверку. Второй находил неизвестный множитель делением произведения на
и получил х = . Кто из них прав? Может ли линейное уравнение иметь два корня? Самым удобным для вычислений является выражение, не содержащее иррациональности в знаменателе.

Тема урока (Слайд 4): Освобождение от иррациональности в знаменателе дроби

Цели (Слайд 5): ознакомиться со способами избавления от иррациональности в знаменатели дроби. Развитие умения освобождать знаменатель от иррациональности;

Решают и проверяют в парах сменного состава.

Обсуждают ситуацию и приходят к выводу.

Записывают тему

Формулируют цели : ознакомиться со способами избавления от иррациональности в знаменатели дроби.

развитие умения определять способ освобождения от иррациональности;

4. Работа над новым материалом.

(10 мин)

Как избавиться от иррациональности в знаменателе? Хотите узнать?

    Работа в группах над новым материалом

    Выступление групп

    Закрепление (Слайд 6)

Работают с опорным конспектом. (Приложение 2)

Решают примеры.

(Приложение 3)

Обмениваются информацией.

5. Зарядка (3 мин)

Делают зарядку

6. Самостоятельная работа

(10 мин)

По разноуровневым карточкам

1-в:

2-в:

3-в:

Выполняют индивидуально, проверяют меняясь тетрадями с другой группой.

Баллы заносят в оценочную карту группы.

(Приложение 1)

7.Творческое задание

(2 мин)

Мартышка – апельсинов продавщица,(Слайд 7)

Приехав как – то раз к себе на дачу,

Нашла там с радикалами задачу.

Разбрасывать их стала все подряд.

Мы просим вас, девчонки и мальчишки,

Решить задачу на хвосте мартышки.

Как вы думаете мы закончили изучать эту тему? Продолжим на следующем уроке.

Рассуждают о том, что это им предстоит узнать на следующем уроке.

8. Задание на дом: (2 мин)

П.19(Слайд 7)

1 уровень: №170 (1-6)

2 уровень: №170 (1-6 и 9,12)

Творческое задание: Мартышкина задача.

Записывают

9.Итог урока. Рефлексия

(3 мин)

Две звезды и пожелание на стикерах прикрепляются на выбранный смайлик (Слайд 7)

Баллы переводят в оценку и сдают учителю оценочную карту группы.


ПРИЛОЖЕНИЕ 1

Оценочная карта группы.

0-8 баллов

Подбери множитель

0-8 баллов

Работа в группе над новым материалом

0-5 баллов

Сам. работа

0-5 баллов

Активность на уроке

0-5 баллов

ПРИЛОЖЕНИЕ 2

Опорный конспект

Если знаменатель алгебраической дроби содержит знак квадратного корня, то говорят, что в знаменателе содержится иррациональность. Преобразование выражения к такому виду, чтобы в знаменателе дроби не оказалось знаков квадратных корней, называют освобождением от иррациональности в знаменателе

При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.

Yandex.RTB R-A-339285-1

Понятие освобождения от иррациональности в знаменателе

Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.

Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , - 2 x + 3 , x + y x - 2 · x · y + 1 , 11 7 - 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:

Определение 1

Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.

Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x - y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x - y , освободившись от иррациональности в знаменателе.

После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.

Основные действия для избавления от иррациональности в знаменателе дроби

Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.

В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.

Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.

Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.

Как преобразовать выражение в знаменателе дроби

Как мы уже говорили, проще всего выполнить преобразование знаменателя.

Пример 1

Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.

Решение

Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.

Запишем ход всего решения без комментариев:

1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16

Ответ: 1 2 · 18 + 50 = 1 16 .

Пример 2

Условие: дана дробь 7 - x (x + 1) 2 . Избавьтесь от иррациональности в знаменателе.

Решение

Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 - x x + 1 2 = 7 - x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.

Ответ: 7 - x x + 1 2 = 7 - x x + 1 .

Избавление от иррациональности методом умножения на корень

Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.

Пример 3

Условие: даны дроби x 3 и - 1 x 2 + y - 4 . Избавьтесь от иррациональности в их знаменателях.

Решение

Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:

x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3

Во втором случае нам надо выполнить умножение на x 2 + y - 4 и преобразовать получившееся выражение в знаменателе:

1 x 2 + y - 4 = - 1 · x 2 + y - 4 x 2 + y - 4 · x 2 + y - 4 = = - x 2 + y - 4 x 2 + y - 4 2 = - x 2 + y - 4 x 2 + y - 4

Ответ: x 3 = x · 3 3 и - 1 x 2 + y - 4 = - x 2 + y - 4 x 2 + y - 4 .

Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k). После этого избавиться от иррациональности будет несложно. Разберем такой пример.

Пример 4

Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.

Решение

Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5:

7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6

Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:

x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4

Ответ : 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .

Избавление от иррациональности методом умножения на сопряженное выражение

Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a - b , a + b , a - b , a + b , a - b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.

Для первого выражения a + b сопряженным будет a - b , для второго a - b – a + b . Для a + b – a - b , для a - b – a + b , для a + b – a - b , а для a - b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.

Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a - b · a + b . Оно может быть заменено разностью квадратов a - b · a + b = a 2 - b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.

Пример 5

Условие: избавьтесь от иррациональности в выражениях 3 7 - 3 и x - 5 - 2 .

Решение

В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:

3 7 - 3 = 3 · 7 + 3 7 - 3 · 7 + 3 = 3 · 7 + 3 7 2 - 3 2 = = 3 · 7 + 3 7 - 9 = 3 · 7 + 3 - 2 = - 3 · 7 + 3 2

Во втором случае нам понадобится выражение - 5 + 2 , которое является сопряженным выражению - 5 - 2 . Умножим на него числитель и знаменатель и получим:

x - 5 - 2 = x · - 5 + 2 - 5 - 2 · - 5 + 2 = = x · - 5 + 2 - 5 2 - 2 2 = x · - 5 + 2 5 - 2 = x · 2 - 5 3

Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:

x - 5 - 2 = - x 5 + 2 = - x · 5 - 2 5 + 2 · 5 - 2 = = - x · 5 - 2 5 2 - 2 2 = - x · 5 - 2 5 - 2 = - x · 5 - 2 3 = = x · 2 - 5 3

Ответ: 3 7 - 3 = - 3 · 7 + 3 2 и x - 5 - 2 = x · 2 - 5 3 .

Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.

Пример 6

Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.

Решение

Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .

Сопряженное знаменателю выражение представляет собой x - 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x - 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:

x x + 4 = x · x - 4 x + 4 · x - 4 = = x · x - 4 x 2 - 4 2 = x · x - 4 x - 16

Если x будет равен 16 , то мы получим:

x x + 4 = 16 16 + 4 = 16 4 + 4 = 2

Следовательно, x x + 4 = x · x - 4 x - 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .

Ответ: x x + 4 = x · x - 4 x - 16 , x ∈ [ 0 , 16) ∪ (16 , + ∞) 2 , x = 16 .

Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов

В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = (a − b) · (a 2 + a · b + b 2) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 - B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 - B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = (а) · (a 2 − a · b + b 2) .

Пример 7

Условие: преобразуйте дроби 1 7 3 - 2 3 и 3 4 - 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.

Решение

Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:

1 7 3 - 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 - 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 - 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 - 2 = = 49 3 + 14 3 + 4 3 5

Во второй дроби представим знаменатель как 2 2 - 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ - 2 и x ≠ − 8:

3 4 - 2 · x 3 + x 2 3 = 3 2 2 - 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 - 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x

Подставим в дробь - 8 и найдем значение:

3 4 - 2 · 8 3 + 8 2 3 = 3 4 - 2 · 2 + 4 = 3 4

Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R), за исключением - 8 , мы получим 3 4 - 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 - 2 · x 3 + x 2 3 = 3 4 .

Ответ: 3 4 - 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = - 8 .

Последовательное применение различных способов преобразования

Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.

Пример N

Условие: преобразуйте 5 7 4 - 2 4 , чтобы избавиться от знаков корней в знаменателе.

Решение

Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:

5 7 4 - 2 4 = 5 · 7 4 + 2 4 7 4 - 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 - 2 4 2 = 5 · 7 4 + 2 4 7 - 2

А теперь применим тот же способ еще раз:

5 · 7 4 + 2 4 7 - 2 = 5 · 7 4 + 2 4 · 7 + 2 7 - 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 - 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 - 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2

Ответ: 5 7 4 - 2 4 = 7 4 + 2 4 · 7 + 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $\frac{0}{0}$.

Раскрытие неопределенности $\frac{0}{0}$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое "сопряжённое" выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин "сопряжённое выражение", использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Нам понадобится несколько формул, которые я запишу ниже:

\begin{equation} a^2-b^2=(a-b)\cdot(a+b) \end{equation} \begin{equation} a^3-b^3=(a-b)\cdot(a^2+ab+b^2) \end{equation} \begin{equation} a^3+b^3=(a+b)\cdot(a^2-ab+b^2) \end{equation} \begin{equation} a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end{equation}

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ - корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

\begin{equation} ax^2+bx+c=a\cdot(x-x_1)\cdot(x-x_2) \end{equation}

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Пример №1

Найти $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}$.

Так как $\lim_{x\to 3}(\sqrt{7-x}-2)=\sqrt{7-3}-2=\sqrt{4}-2=0$ и $\lim_{x\to 3} (x-3)=3-3=0$, то в заданном пределе мы имеем неопределённость вида $\frac{0}{0}$. Раскрыть эту неопределённость нам мешает разность $\sqrt{7-x}-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое "сопряжённое выражение". Как действует такое умножение мы сейчас и рассмотрим. Умножим $\sqrt{7-x}-2$ на $\sqrt{7-x}+2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)$$

Чтобы раскрыть скобки применим , подставив в правую часть упомянутой формулы $a=\sqrt{7-x}$, $b=2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)=(\sqrt{7-x})^2-2^2=7-x-4=3-x.$$

Как видите, если умножить числитель на $\sqrt{7-x}+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $\sqrt{7-x}+2$ и будет сопряжённым к выражению $\sqrt{7-x}-2$. Однако мы не вправе просто взять и умножить числитель на $\sqrt{7-x}+2$, ибо это изменит дробь $\frac{\sqrt{7-x}-2}{x-3}$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

$$ \lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}= \left|\frac{0}{0}\right|=\lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}$$

Теперь вспомним, что $(\sqrt{7-x}-2)(\sqrt{7-x}+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

$$ \lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{3-x}{(x-3)\cdot(\sqrt{7-x}+2)}=\\ =\lim_{x\to 3}\frac{-(x-3)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2} $$

Неопределенность $\frac{0}{0}$ исчезла. Сейчас можно легко получить ответ данного примера:

$$ \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2}=\frac{-1}{\sqrt{7-3}+2}=-\frac{1}{\sqrt{4}+2}=-\frac{1}{4}.$$

Замечу, что сопряжённое выражение может менять свою структуру - в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Ответ : $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}=-\frac{1}{4}$.

Пример №2

Найти $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$.

Так как $\lim_{x\to 2}(\sqrt{x^2+5}-\sqrt{7x^2-19})=\sqrt{2^2+5}-\sqrt{7\cdot 2^2-19}=3-3=0$ и $\lim_{x\to 2}(3x^2-5x-2)=3\cdot2^2-5\cdot 2-2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$ на выражение $\sqrt{x^2+5}+\sqrt{7x^2-19}$, сопряжённое к знаменателю:

$$ \lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=\left|\frac{0}{0}\right|= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})} $$

Вновь, как и в примере №1, нужно использовать для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=\sqrt{x^2+5}$, $b=\sqrt{7x^2-19}$, получим такое выражение для знаменателя:

$$ \left(\sqrt{x^2+5}-\sqrt{7x^2-19}\right)\left(\sqrt{x^2+5}+\sqrt{7x^2-19}\right)=\\ =\left(\sqrt{x^2+5}\right)^2-\left(\sqrt{7x^2-19}\right)^2=x^2+5-(7x^2-19)=-6x^2+24=-6\cdot(x^2-4) $$

Вернёмся к нашему пределу:

$$ \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})}= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{-6\cdot(x^2-4)}=\\ =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} $$

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать . Для начала решим квадратное уравнение $3x^2-5x-2=0$:

$$ 3x^2-5x-2=0\\ \begin{aligned} & D=(-5)^2-4\cdot3\cdot(-2)=25+24=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot3}=\frac{5-7}{6}=-\frac{2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot3}=\frac{5+7}{6}=\frac{12}{6}=2. \end{aligned} $$

Подставляя $x_1=-\frac{1}{3}$, $x_2=2$ в , будем иметь:

$$ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)(x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2)=\left(3\cdot x+3\cdot\frac{1}{3}\right)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся , подставив в неё $a=x$, $b=2$:

$$ x^2-4=x^2-2^2=(x-2)(x+2) $$

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} $$

Сокращая на скобку $x-2$ получим:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}. $$

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}=\\ =-\frac{1}{6}\cdot\frac{(3\cdot 2+1)(\sqrt{2^2+5}+\sqrt{7\cdot 2^2-19})}{2+2}= -\frac{1}{6}\cdot\frac{7(3+3)}{4}=-\frac{7}{4}. $$

Ответ : $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=-\frac{7}{4}$.

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Пример №3

Найти $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}$.

Так как $\lim_{x\to 5}(\sqrt{x+4}-\sqrt{x^2-16})=\sqrt{9}-\sqrt{9}=0$ и $\lim_{x\to 5}(\sqrt{x^2-3x+6}-\sqrt{5x-9})=\sqrt{16}-\sqrt{16}=0$, то мы имеем неопределённость вида $\frac{0}{0}$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $\sqrt{x+4}+\sqrt{x^2-16}$, сопряжённое числителю. А во-вторых на выражение $\sqrt{x^2-3x+6}-\sqrt{5x-9}$, сопряжённое знаменателю.

$$ \lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 5}\frac{(\sqrt{x+4}-\sqrt{x^2-16})(\sqrt{x+4}+\sqrt{x^2-16})(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(\sqrt{x^2-3x+6}-\sqrt{5x-9})(\sqrt{x^2-3x+6}+\sqrt{5x-9})(\sqrt{x+4}+\sqrt{x^2-16})} $$ $$ -x^2+x+20=0;\\ \begin{aligned} & D=1^2-4\cdot(-1)\cdot 20=81;\\ & x_1=\frac{-1-\sqrt{81}}{-2}=\frac{-10}{-2}=5;\\ & x_2=\frac{-1+\sqrt{81}}{-2}=\frac{8}{-2}=-4. \end{aligned} \\ -x^2+x+20=-1\cdot(x-5)(x-(-4))=-(x-5)(x+4). $$

Для выражения $x^2-8x+15$ получим:

$$ x^2-8x+15=0;\\ \begin{aligned} & D=(-8)^2-4\cdot 1\cdot 15=4;\\ & x_1=\frac{-(-8)-\sqrt{4}}{2}=\frac{6}{2}=3;\\ & x_2=\frac{-(-8)+\sqrt{4}}{2}=\frac{10}{2}=5. \end{aligned}\\ x^2+8x+15=1\cdot(x-3)(x-5)=(x-3)(x-5). $$

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

$$ \lim_{x\to 5}\frac{(-x^2+x+20)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x^2-8x+15)(\sqrt{x+4}+\sqrt{x^2-16})}= \lim_{x\to 5}\frac{-(x-5)(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(x-5)(\sqrt{x+4}+\sqrt{x^2-16})}=\\ =\lim_{x\to 5}\frac{-(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(\sqrt{x+4}+\sqrt{x^2-16})}= \frac{-(5+4)(\sqrt{5^2-3\cdot 5+6}+\sqrt{5\cdot 5-9})}{(5-3)(\sqrt{5+4}+\sqrt{5^2-16})}=-6. $$

Ответ : $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=-6$.

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения - избавиться от иррациональности, вызывающей неопределённость.

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.

Существует несколько типов иррациональности дроби в знаменателе. Она связана с присутствием в нем алгебраического корня одной либо разных степеней. Дабы избавиться от иррациональности , необходимо исполнить определенные математические действия в зависимости от обстановки.

Инструкция

1. Раньше чем избавиться от иррациональности дроби в знаменателе, следует определить ее тип, и в зависимости от этого продолжать решение. И правда любая иррациональность следует из простого присутствия корней, разные их комбинации и степени полагают различные алгорифмы.

2. Квадратный корень в знаменателе, выражение вида a/?bВведите добавочный множитель, равный?b. Дабы дробь не изменилась, умножать необходимо и числитель, и знаменатель:a/?b ? (a ?b)/b.Пример 1: 10/?3 ? (10 ?3)/3.

3. Присутствие под чертой дроби корня дробной степени вида m/n, причем n>mЭто выражение выглядит дальнейшим образом:a/?(b^m/n).

4. Избавьтесь от сходственной иррациональности также путем ввода множителя, на данный раз больше трудного: b^(n-m)/n, т.е. из показателя степени самого корня необходимо вычесть степень выражения под его знаком. Тогда в знаменателе останется только первая степень:a/(b^m/n) ? a ?(b^(n-m)/n)/b.Пример 2: 5/(4^3/5) ? 5 ?(4^2/5)/4 = 5 ?(16^1/5)/4.

5. Сумма квадратных корнейУмножьте обе составляющих дроби на аналогичную разность. Тогда из иррационального сложения корней знаменатель преобразуется в разность выражений/чисел под знаком корня:a/(?b + ?c) ? a (?b — ?c)/(b — c).Пример 3: 9/(?13 + ?23) ? 9 (?13 — ?23)/(13 — 23) = 9 (?23 — ?13)/10.

6. Сумма/разность кубических корнейВыберите в качестве добавочного множителя неполный квадрат разности, если в знаменателе стоит сумма, и соответственно неполный квадрат суммы для разности корней:a/(?b ± ?c) ? a (?b? ? ?(b c) + ?c?)/ ((?b ± ?c) ?b? ? ?(b c) + ?c?) ?a (?b? ? ?(b c) + ?c?)/(b ± c).Пример 4: 7/(?5 + ?4) ? 7 (?25- ?20 + ?16)/9.

7. Если в задаче присутствует и квадратный и кубический корень, тогда поделите решение на два этапа: ступенчато выведите из знаменателя квадратный корень, а после этого кубический. Делается это по теснее знаменитым вам способам: в первом действии необходимо предпочесть множитель разности/суммы корней, во втором – неполный квадрат суммы/разности.

Совет 2: Как избавиться от иррациональности в знаменателе

Правильная запись дробного числа не содержит иррациональности в знаменателе . Такая запись и легче понимается на вид, следственно при возникновении иррациональности в знаменателе умно от нее избавиться. В этом случае иррациональность может перейти в числитель.

Инструкция

1. Для начала дозволено разглядеть примитивный пример — 1/sqrt(2). Квадратный корень из 2-х — иррациональное число в знаменателе .В этом случае нужно домножить числитель и знаменатель дроби на ее знаменатель. Это обеспечит разумное число в знаменателе . Подлинно, sqrt(2)*sqrt(2) = sqrt(4) = 2. Умножение 2-х идентичных квадратных корней друг на друга даст в результате то, что находится под всем из корней: в данном случае — двойку.В результате: 1/sqrt(2) = (1*sqrt(2))/(sqrt(2)*sqrt(2)) = sqrt(2)/2. Данный алгорифм подходит также к дробям, в знаменателе которых корень умножается на разумное число. Числитель и знаменатель в этом случае надобно умножить на корень, находящийся в знаменателе .Пример: 1/(2*sqrt(3)) = (1*sqrt(3))/(2*sqrt(3)*sqrt(3)) = sqrt(3)/(2*3) = sqrt(3)/6.

2. Безусловно подобно надобно делать, если в знаменателе находится не квадратный корень, а, скажем кубический либо всякий иной степени. Корень в знаменателе необходимо умножать на верно такой же корень, на данный же корень умножать и числитель. Тогда корень перейдет в числитель.

3. В больше трудном случае в знаменателе присутствует сумма либо разность иррационального и разумного числа либо 2-х иррациональных чисел.В случае суммы (разности) 2-х квадратных корней либо квадратного корня и разумного числа дозволено воспользоваться классно знаменитой формулой (x+y)(x-y) = (x^2)-(y^2). Она поможет избавиться от иррациональности в знаменателе . Если в знаменателе разность, то домножать числитель и знаменатель надобно на сумму таких же чисел, если сумма — то на разность. Эта домножаемая сумма либо разность будет именоваться сопряженной к выражению, стоящему в знаменателе .Результат этой схеме отменно виден на примере: 1/(sqrt(2)+1) = (sqrt(2)-1)/(sqrt(2)+1)(sqrt(2)-1) = (sqrt(2)-1)/((sqrt(2)^2)-(1^2)) = (sqrt(2)-1)/(2-1) = sqrt(2)-1.

4. Если в знаменателе присутствует сумма (разность), в которой присутствует корень большей степени, то обстановка становится нетривиальной и освобождение от иррациональности в знаменателе не неизменно допустимо

Совет 3: Как освободиться от иррациональности в знаменателе дроби

Дробь состоит из числителя, расположенного сверху линии, и знаменателя, на тот, что он делится, расположенного внизу. Иррациональным именуется число, которое не может быть представлено в виде дроби с целым числом в числителе и естественным в знаменателе . Такими числами являются, скажем, квадратный корень из 2-х либо пи. Традиционно, когда говорят об иррациональности в знаменателе , подразумевается корень.

Инструкция

1. Избавьтесь от иррациональности умножением на знаменатель. Таким образом иррациональность будет перенесена в числитель. При умножении числителя и знаменателя на одно и то же число, значение дроби не меняется. Воспользуйтесь этим вариантом, если каждый знаменатель представляет собой корень.

2. Умножьте числитель и знаменатель на знаменатель надобное число раз, в зависимости от корня. Если корень квадратный, то один раз.

3. Разглядите пример с квадратным корнем. Возьмите дробь (56-y)/√(x+2). В ней есть числитель (56-y) и иррациональный знаменатель √(x+2), представляющий собой квадратный корень.

4. Умножьте числитель и знаменатель дроби на знаменатель, то есть на √(x+2). Первоначальный пример (56-y)/√(x+2) превратится в ((56-y)*√(x+2))/(√(x+2)*√(x+2)). В результате получится ((56-y)*√(x+2))/(x+2). Сейчас корень находится в числителе, а в знаменателе нет иррациональности.

5. Не неизменно знаменатель дроби каждый находится под корнем. Избавьтесь от иррациональности, воспользовавшись формулой (x+y)*(x-y)=x²-y².

6. Разглядите пример с дробью (56-y)/(√(x+2)-√y). Ее иррациональный знаменатель содержит разницу 2-х квадратных корней. Дополните знаменатель до формулы (x+y)*(x-y).

7. Умножьте знаменатель на сумму корней. Умножьте на то же самое числитель, дабы значение дроби не изменилось. Дробь примет вид ((56-y)*(√(x+2)+√y))/((√(x+2)-√y)*(√(x+2)+√y)).

8. Воспользуйтесь вышеупомянутым свойством (x+y)*(x-y)=x²-y² и освободите знаменатель от иррациональности. В итоге получится ((56-y)*(√(x+2)+√y))/(x+2-y). Сейчас корень находится в числителе, а знаменатель избавился от иррациональности.

9. В трудных случаях повторяйте оба этих варианта, применяя по необходимости. Учтите, что не неизменно допустимо избавиться от иррациональности в знаменателе .

Алгебраическая дробь - это выражение вида А/В, где буквы А и В обозначают всякие числовые либо буквенные выражения. Нередко числитель и знаменатель в алгебраических дробях имеют массивный вид, но действия с такими дробями следует делать по тем же правилам, что и действия с обычными, где числитель и знаменатель - целые позитивные числа.

Инструкция

1. Если даны смешанные дроби , переведите их в неправильные (дробь, в которой числитель огромнее знаменателя): умножьте знаменатель на целую часть и прибавьте числитель. Так число 2 1/3 превратится в 7/3. Для этого 3 умножают на 2 и прибавляют единицу.

2. Если нужно перевести десятичную дробь в неправильную, то представьте ее как деление числа без запятой на единицу со столькими нулями, сколько чисел стоит позже запятой. Скажем, число 2,5 представьте как 25/10 (если сократить, то получится 5/2), а число 3,61 — как 361/100. Оперировать с неправильными дробями нередко легче, чем со смешанными либо десятичными.

3. Если дроби имеют идентичные знаменатели, а вам нужно их сложить, то примитивно сложите числители; знаменатели остаются без изменений.

4. При необходимости произвести вычитание дробей с идентичными знаменателями из числителя первой дроби вычтите числитель 2-й дроби. Знаменатели при этом также не меняются.

5. Если нужно сложить дроби либо вычесть одну дробь из иной, а они имеют различные знаменатели, приведите дроби к всеобщему знаменателю. Для этого обнаружьте число, которое будет наименьшим всеобщим кратным (НОК) обоим знаменателям либо нескольким, если дробей огромнее 2-х. НОК - это число, которое разделится на знаменатели всех данных дробей. К примеру, для 2 и 5 это число 10.

6. Позже знака «равно» проведите горизонтальную черту и запишите в знаменатель это число (НОК). Проставьте к всему слагаемому добавочные множители - то число, на которое нужно домножить и числитель, и знаменатель, дабы получить НОК. Ступенчато умножайте числители на добавочные множители, сберегая знак сложения либо вычитания.

7. Посчитайте итог, сократите его при необходимости либо выделите целую часть. Для примера — нужно сложить? и?. НОК для обеих дробей - 12. Тогда добавочный множитель к первой дроби - 4, ко 2-й - 3. Итого: ?+?=(1·4+1·3)/12=7/12.

8. Если дан пример на умножение, перемножьте между собой числители (это будет числитель итога) и знаменатели (получится знаменатель итога). В этом случае к всеобщему знаменателю их приводить не нужно.

9. Дабы поделить дробь на дробь, нужно опрокинуть вторую дробь «вверх ногами» и перемножить дроби. То есть а/b: с/d = a/b · d/c.

10. Раскладывайте числитель и знаменатель на множители, если это требуется. Скажем, переносите всеобщий множитель за скобку либо раскладывайте по формулам сокращённого умножения, дабы после этого дозволено было при необходимости сократить числитель и знаменатель на НОД — минимальный всеобщий делитель.

Обратите внимание!
Числа складывайте с числами, буквы одного рода с буквами того же рода. Скажем, невозможно сложить 3a и 4b, значит в числителе так и останется их сумма либо разность - 3a±4b.

В быту почаще каждого встречаются не настоящие числа: 1, 2, 3, 4 и т.д. (5 кг. картофеля), а дробные, нецелые числа (5,4 кг лука). Множество из них представлены в виде десятичных дробей. Но десятичную дробь представить в виде дроби довольно легко.

Инструкция

1. Скажем, дано число «0,12». Если не уменьшать эту десятичную дробь и представить ее так, как есть, то выглядеть она будет так: 12/100 («двенадцать сотых»). Дабы избавиться от сотни в знаменателе, надобно и числитель, и знаменатель поделить на такое число, которое делит их на целые числа. Это число 4. Тогда, поделив числитель и знаменатель, получается число: 3/25.

2. Если рассматривать больше бытовую обстановку, то зачастую на ценнике у продуктов видно, что вес его составляет, к примеру, 0,478 кг либо пр. Такое число тоже легко представить в виде дроби :478/1000 = 239/500. Дробь эта довольно уродливая, и если бы была вероятность, то эту десятичную дробь дозволено было бы уменьшать и дальше. И все тем же способом: подбора числа, которое делит как числитель, так и знаменатель. Это число именуется наибольшим всеобщим множителем. «Наибольшим» множитель назван потому, что значительно комфортнее и числитель, и знаменатель сразу поделить на 4 (как в первом примере), чем разделять двукратно на 2.

Видео по теме

Десятичная дробь — разновидность дроби , у которой в знаменателе есть «круглое» число: 10, 100, 1000 и т.д., Скажем, дробь 5/10 имеет десятичную запись 0,5. Исходя из этого тезиса, дробь дозволено представить в виде десятичной дроби .

Инструкция

1. Возможен, нужно представить в виде десятичной дробь 18/25.Вначале надобно сделать так, дабы в знаменателе возникло одно из «круглых» чисел: 100, 1000 и т.д. Для этого надобно знаменатель умножить на 4. Но на 4 понадобится умножить и числитель, и знаменатель.

2. Умножив числитель и знаменатель дроби 18/25 на 4, получается 72/100. Записывается эта дробь в десятичном виде так: 0,72.

При делении 2-х десятичных дробей, когда под рукой не оказывается калькулятора, многие испытывают некоторые затруднения. На самом деле здесь нет ничего трудного. Десятичные дроби именуются таковыми, если в их знаменателе число, кратное 10. Как водится, такие числа записываются в одну строчку и имеют запятую, отделяющую дробную часть от целой. Видимо по причине наличия дробной части, которая к тому же отличается числом знаков позже запятой, многим не ясно, как изготавливать без калькулятора математические действия с такими числами.

Вам понадобится

  • лист бумаги, карандаш

Инструкция

1. Выходит, для того, дабы поделить одну десятичную дробь на иную, надобно посмотреть на оба числа и определить, у какого из них огромнее знаков позже запятой. Умножаем оба числа на число, кратное 10, т.е. 10, 1000 либо 100000, число нулей в котором равно большему числу знаков позже запятой одного из 2-х наших начальных чисел. Сейчас обе десятичные дроби превратились в обычные целые числа. Берем лист бумаги с карандашом и разделяем два получившихся числа «уголком». Получаем итог.

2. Скажем, нам надобно поделить число 7,456 на 0,43. Первое число имеет огромнее знаков позже запятой (3 знака), следственно умножаем оба числа не 1000 и получаем два примитивных целых числа: 7456 и 430. Сейчас разделяем «уголком» 7456 на 430 и получаем, что, если 7,456 поделить 0,43 выйдет приблизительно 17,3.

3. Существует еще один метод деления. Записываем десятичные дроби в виде примитивных дробей с числителем и знаменателем, для нашего случая это 7456/1000 и 43/100. Позже этого записываем выражение для деления 2-х примитивных дробей:7456*100/1000*43,после этого уменьшаем десятки, получаем:7456/10*43 = 7456/430В финальном выводе вновь получаем деление 2-х примитивных чисел 7456 и 430, которое дозволено произвести «уголком».

Видео по теме

Полезный совет
Таким образом, способ деления десятичных дробей заключается к приведению их к целым числам с поддержкой умножения всякого из них на одно и то же число. Выполнение операций с целыми числами, как водится, не вызывает ни у кого сложностей.

Видео по теме