Open
Close

Кислород получение применение химические свойства. Свойства кислорода и способы его получения

Процессы горения и дыхания издавна привлекали внимание ученых. Первые указания на то, что не весь воздух, а лишь "активная" его часть поддерживает горение, обнаружены в китайских рукописях 8 века. Много позже Леонардо да Винчи (1452-1519) рассматривал воздух как смесь двух газов, лишь один из которых расходуется при горении и дыхании. Окончательное открытие двух главных составных частей воздуха - азота и Кислорода, сделавшее эпоху в науке, произошло только в конце 18 века. Кислород получили почти одновременно К. Шееле (1769-70) путем прокаливания селитр (KNO 3 , NaNO 3), двуокиси марганца МnО 2 и других веществ и Дж. Пристли (1774) при нагревании сурика Рb 3 О 4 и оксида ртути HgO. В 1772 году Д. Резерфорд открыл азот. В 1775 году А. Лавуазье, произведя количественный анализ воздуха, нашел, что он "состоит из двух (газов) различного и, так сказать, противоположного характера", то есть из Кислорода и азота. На основе широких экспериментальных исследований Лавуазье правильно объяснил горение и дыхание как процессы взаимодействия веществ с Кислородом. Поскольку Кислород входит в состав кислот, Лавуазье назвал его oxygene, то есть "образующий кислоты" (от греч. oxys - кислый и gennao - рождаю; отсюда и русское название "кислород").

Распространение Кислорода в природе. Кислород - самый распространенный химический элемент на Земле. Связанный Кислород составляет около 6 / 7 массы водной оболочки Земли - гидросферы (85,82% по массе), почти половину литосферы (47% по массе), и только в атмосфере, где Кислород находится в свободном состоянии, он занимает второе место (23,15% по массе) после азота.

Кислород стоит на первом месте и по числу образуемых им минералов (1364); среди минералов, содержащих Кислород, преобладают силикаты (полевые шпаты, слюды и другие), кварц, оксиды железа, карбонаты и сульфаты. В живых организмах в среднем около 70% Кислорода; он входит в состав большинства важнейших органических соединений (белков, жиров, углеводов и т. д.) и в состав неорганических соединений скелета. Исключительно велика роль свободного Кислород в биохимических и физиологических процессах, особенно в дыхании. За исключением некоторых микроорганизмов-анаэробов, все животные и растения получают необходимую для жизнедеятельности энергию за счет биологического окисления различных веществ с помощью Кислорода.

Вся масса свободного Кислорода Земли возникла и сохраняется благодаря жизнедеятельности зеленых растений суши и Мирового океана, выделяющих Кислород в процессе фотосинтеза. На земной поверхности, где протекает фотосинтез и господствует свободный Кислород, формируются резко окислительные условия. Напротив, в магме, а также глубоких горизонтах подземных вод, в илах морей и озер, в болотах, где свободный Кислород отсутствует, формируется восстановительная среда. Окислительно-восстановительные процессы с участием Кислорода определяют концентрацию многих элементов и образование месторождений полезных ископаемых - угля, нефти, серы, руд железа, меди и т. д.. Изменения в круговороте Кислорода вносит и хозяйственная деятельность человека. В некоторых промышленных странах при сгорании топлива расходуется Кислорода больше, чем его выделяют растения при фотосинтезе. Всего же на сжигание топлива в мире ежегодно потребляется около 9·10 9 т Кислорода.

Изотопы, атом и молекула Кислорода. Кислород имеет три устойчивых изотопа: 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759%, 0,037% и 0,204% от общего числа атомов Кислорода на Земле. Резкое преобладание в смеси изотопов наиболее легкого из них 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории атомного ядра, обладают особой устойчивостью.

В соответствии с положением Кислорода в периодической системе элементов Менделеева электроны атома Кислорода располагаются на двух оболочках: 2 - на внутренней и 6 - на внешней (конфигурация 1s 2 2s 2 2p 4). Поскольку внешняя оболочка атома Кислорода не заполнена, а потенциал ионизации и сродство к электрону составляют соответственно 13,61 и 1,46 эв, атом Кислорода в химических соединениях обычно приобретает электроны и имеет отрицательный эффективный заряд. Напротив, крайне редки соединения, в которых электроны отрываются (точнее оттягиваются) от атома Кислород (таковы, например, F 2 O, F 2 О 3). Раньше, исходя единственно из положения Кислорода в периодической системе, атому Кислорода в оксидах и в большинстве других соединений приписывали отрицательный заряд (-2). Однако, как показывают экспериментальные данные, ион О 2- не существует ни в свободном состоянии, ни в соединениях, и отрицательный эффективный заряд атома Кислорода практически никогда существенно не превышает единицы.

В обычных условиях молекула Кислорода двухатомна (О 2); в тихом электрическом разряде образуется также трехатомная молекула О 3 - озон; при высоких давлениях обнаружены в небольших количествах молекулы О 4 . Электронное строение О 2 представляет большой теоретический интерес. В основном состоянии молекула О 2 имеет два неспаренных электрона; для нее неприменима "обычная" классическая структурная формула О=О с двумя двухэлектронными связями. Исчерпывающее объяснение этого факта дано в рамках теории молекулярных орбиталей. Энергия ионизации молекулы Кислорода (О 2 - е → О 2 +) составляет 12,2 эв, а сродство к электрону (О 2 + е → О 2 -) - 0,94 эв. Диссоциация молекулярного Кислорода на атомы при обычной температуре ничтожно мала, она становится заметной лишь при 1500°С; при 5000°С молекулы Кислорода почти полностью диссоциированы на атомы.

Физические свойства Кислорода. Кислород бесцветный газ, сгущающийся при -182,9°С и нормальном давлении в бледно-синюю жидкость, которая при -218,7°С затвердевает, образуя синие кристаллы. Плотность газообразного Кислорода (при 0°С и нормальном давлении) 1,42897 г/л. Критическая температура Кислорода довольно низка (Т крит = -118,84°С), то есть ниже, чем у Cl 2 , СО 2 , SO 2 и некоторых других газов; Т крит = 4,97 Мн/м 2 (49,71 ат). Теплопроводность (при 0°С) 23,86·10 -3 вт/(м·К). Молярная теплоемкость (при 0°С) в дж/(моль·К) С p = 28,9, С v = 20,5, С p /С v = 1,403. Диэлектрическая проницаемость газообразного Кислорода 1,000547 (0°С), жидкого 1,491. Вязкость 189 мпуаз (0°С). Кислород мало растворим в воде: при 20°С и 1 ат в 1 м 3 воды растворяется 0,031 м 3 , а при 0°С - 0,049 м 3 Кислорода. Хорошими твердыми поглотителями Кислорода являются платиновая чернь и активный древесный уголь.

Химические свойства Кислорода. Кислород образует химические соединения со всеми элементами, кроме легких инертных газов. Будучи наиболее активным (после фтора) неметаллом, Кислород взаимодействует с большинством элементов непосредственно; исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с Кислородом получают косвенным путем. Почти все реакции Кислорода с других веществами - реакции окисления экзотермичны, то есть сопровождаются выделением энергии. С водородом при обычных температурах Кислород реагирует крайне медленно, выше 550°С эта реакция идет со взрывом:

2Н 2 + О 2 = 2Н 2 О.

С серой, углеродом, азотом, фосфором Кислород взаимодействует при обычных условиях очень медленно. При повышении температуры скорость реакции возрастает и при некоторой, характерной для каждого элемента температуре воспламенения начинается горение. Реакция азота с Кислородом благодаря особой прочности молекулы N 2 эндотермична и становится заметной лишь выше 1200°С или в электрическом разряде: N 2 + О 2 = 2NO. Кислород активно окисляет почти все металлы, особенно легко - щелочные и щелочноземельные. Активность взаимодействия металла с Кислородом зависит от многих факторов - состояния поверхности металла, степени измельчения, присутствия примесей.

В процессе взаимодействия вещества с Кислородом исключительно важна роль воды. Например, даже такой активный металл, как калий, с совершенно лишенным влаги Кислородом не реагирует, но воспламеняется в Кислороде при обычной температуре в присутствии даже ничтожных количеств паров воды. Подсчитано, что в результате коррозии ежегодно теряется до 10% всего производимого металла.

Оксиды некоторых металлов, присоединяя Кислород, образуют перекисные соединения, содержащие 2 или более связанных между собой атомов Кислорода. Так, пероксиды Na 2 O 2 и ВаО 2 включают пероксидный ион О 2 2- , надпероксиды NaO 2 и КО 2 - ион О 2 - , а озониды NaO 3 , КО 3 , RbO 3 и CsO 3 - ион О 3 - . Кислород экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в Кислороде в отсутствии катализаторов, реакция идет по уравнению: 4NH 3 + ЗО 2 = 2N 2 + 6H 2 O. Окисление аммиака кислородом в присутствии катализатора дает NO (этот процесс используют при получении азотной кислоты). Особое значение имеет горение углеводородов (природного газа, бензина, керосина) - важнейший источник тепла в быту и промышленности, например СН 4 + 2О 2 = CO 2 + 2H 2 O. Взаимодействие углеводородов с Кислородом лежит в основе многих важнейших производственных процессов - такова, например, так называемая конверсия метана, проводимая для получения водорода: 2СН 4 + О 2 + 2Н 2 О = 2СО 2 + 6Н 2 . Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и другие) энергично присоединяют Кислород. Окисление Кислородом питательных веществ в клетках служит источником энергии живых организмов.

Получение Кислорода. Существует 3 основных способа получения Кислорода: химический, электролизный (электролиз воды) и физический (разделение воздуха).

Химический способ изобретен ранее других. Кислород можно получать, например, из бертолетовой соли КClОз, которая при нагревании разлагается, выделяя О 2 в количестве 0,27 м 3 на 1 кг соли. Оксид бария ВаО при нагревании до 540°С сначала поглощает Кислород из воздуха, образуя пероксид ВаО 2 , а при последующем нагревании до 870°С ВаО 2 разлагается, выделяя чистый Кислород. Его можно получать также из KMnO 4 , Ca 2 PbO 4 , К 2 Сг 2 О 7 и других веществ при нагревании и добавлении катализаторов. Химический способ получения Кислорода малопроизводителен и дорог, промышленного значения не имеет и используется лишь в лабораторной практике.

Электролизный способ состоит в пропускании постоянного электрического тока через воду, в которую для повышения ее электропроводности добавлен раствор едкого натра NaOH. При этом вода разлагается на Кислород и водород. Кислород собирается около положительного электрода электролизера, а водород - около отрицательного. Этим способом Кислород добывают как побочный продукт при производстве водорода. Для получения 2 м 3 водорода и 1 м 3 Кислорода затрачивается 12-15 кВт·ч электроэнергии.

Разделение воздуха является основным способом получения Кислорода в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а уже затем разделяют на составные части. Такой способ получения Кислорода называется разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (-180°С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого Кислород, основано на различии температуры кипения его компонентов [Т кип О 2 90,18 К (-182,9°С), t кип N 2 77,36 К (-195,8°С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость все более обогащается Кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий Кислород нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько литров) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м 3 /ч Кислорода). Эти установки производят технологический Кислород с концентрацией 95-98,5%, технический - с концентрацией 99,2-99,9% и более чистый, медицинский Кислород, выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м 3 .

Кислород можно получать также при разделении воздуха по методу избирательного проницания (диффузии) через перегородки-мембраны. Воздух под повышенным давлением пропускается через фторопластовые, стеклянные или пластиковые перегородки, структурная решетка которых способна пропускать молекулы одних компонентов и задерживать другие.

Газообразный Кислород хранят и транспортируют в стальных баллонах и ресиверах при давлении 15 и 42 Мн/м 2 (соответственно 150 и 420 бар, или 150 и 420 ат), жидкий Кислород в металлических сосудах Дьюара или в специальных цистернах-танках. Для транспортировки жидкого и газообразного Кислорода используют также специальные трубопроводы. Кислородные баллоны окрашены в голубой цвет и имеют черную надпись "кислород".

Применение Кислорода. Технический Кислород используют в процессах газопламенной обработки металлов, в сварке, кислородной резке, поверхностной закалке, металлизации и других, а также в авиации, на подводных судах и прочее. Технологический Кислород применяют в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и других химических продуктов. Жидкий Кислород применяют при взрывных работах, в реактивных двигателях и в лабораторной практике в качестве хладагента.

Заключенный в баллоны чистый Кислород используют для дыхания на больших высотах, при космических полетах, при подводном плавании и других В медицине Кислород дают для вдыхания тяжело больным, применяют для приготовления кислородных, водяных и воздушных (в кислородных палатках) ванн, для внутримышечного введения и т. п.

Кислород в металлургии широко применяется для интенсификации ряда пирометаллургических процессов. Полная или частичная замена поступающего в металлургические агрегаты воздуха кислородом изменила химизм процессов, их теплотехнические параметры и технико-экономические показатели. Кислородное дутье позволило сократить потери тепла с уходящими газами, значительная часть которых при воздушном дутье составлял азот. Не принимая существенного участия в химических процессах, азот замедлял течение реакций, уменьшая концентрацию активных реагентов окислительно-восстановительной среды. При продувке Кислородом снижается расход топлива, улучшается качество металла, в металлургических агрегатах возможно получение новых видов продукции (например, шлаков и газов необычного для данного процесса состава, находящих специальное техническое применение) и др.

Первые опыты по применению дутья, обогащенного Кислородом, в доменном производстве для выплавки передельного чугуна и ферромарганца были проведены одновременно в СССР и Германии в 1932-33. Повышенное содержание Кислорода в доменном дутье сопровождается большим сокращением расхода последнего, при этом увеличивается содержание в доменном газе оксида углерода и повышается его теплота сгорания. Обогащение дутья Кислородом позволяет повысить производительность доменной печи, а в сочетании с газообразным и жидким топливом, подаваемым в горн, приводит к снижению расхода кокса. В этом случае на каждый дополнительный процент Кислорода в дутье производительность увеличивается примерно на 2,5%, а расход кокса снижается на 1%.

Кислород в мартеновском производстве в СССР сначала использовали для интенсификации сжигания топлива (в промышленном масштабе Кислород для этой цели впервые применили на заводах "Серп и молот" и "Красное Сормово" в 1932-33). В 1933 начали вдувать Кислород непосредственно в жидкую ванну с целью окисления примесей в период доводки. С повышением интенсивности продувки расплава на 1 м 3 /т за 1 ч производительность печи возрастает на 5-10%, расход топлива сокращается на 4-5%. Однако при продувке увеличиваются потери металла. При расходе Кислорода до 10 м 3 /т за 1 ч выход стали снижается незначительно (до 1%). В мартеновском производстве Кислород находит все большее распространение. Так, если в 1965 году с применением Кислорода в мартеновских печах было выплавлено 52,1% стали, то в 1970 уже 71%.

Опыты по применению Кислорода в электросталеплавильных печах в СССР были начаты в 1946 на заводе "Электросталь". Внедрение кислородного дутья позволило увеличить производительность печей на 25-30%, снизить удельный расход электроэнергии на 20-30%, повысить качество стали, сократить расход электродов и некоторых дефицитных легирующих добавок. Особенно эффективной оказалась подача Кислорода в электропечи при производстве нержавеющих сталей с низким содержанием углерода, выплавка которых сильно затрудняется вследствие науглероживающего действия электродов. Доля электростали, получаемой в СССР с использованием Кислорода, непрерывно росла и в 1970 составила 74,6% от общего производства стали.

В ваграночной плавке обогащенное Кислородом дутье применяется главным образом для высокого перегрева чугуна, что необходимо при производстве высококачественного, в частности высоколегированного, литья (кремнистого, хромистого и т. д.). В зависимости от степени обогащения Кислородом ваграночного дутья на 30-50% снижается расход топлива, на 30-40% уменьшается содержание серы в металле, на 80-100% увеличивается производительность вагранки и существенно (до 1500°С) повышается температура выпускаемого из нее чугуна.

Кислород в цветной металлургии получил распространение несколько позже, чем в черной. Обогащенное Кислородом дутье используется при конвертировании штейнов, в процессах шлаковозгонки, вельцевания, агломерации и при отражательной плавке медных концентратов. В свинцовом, медном и никелевом производстве кислородное дутье интенсифицировало процессы шахтной плавки, позволило снизить расход кокса на 10-20%, увеличить проплав на 15-20% и сократить количество флюсов в отдельных случаях в 2-3 раза. Обогащение Кислородом воздушного дутья до 30% при обжиге цинковых сульфидных концентратов увеличило производительность процесса на 70% и уменьшило объем отходящих газов на 30%.

Взаимодействие кислорода с простыми веществами Кислороду присуща высокая химическая активность. Многие вещества реагируют с кислородом при комнатной температуре. Так, например, свежий срез яблока довольно быстро приобретает бурую окраску, это происходит вследствие химических реакций между органическими веществами, содержащимися в яблоке, и кислородом, содержащимся в воздухе. С простыми веществами кислород, как правило, реагирует при нагревании. В металлическую ложечку для сжигания веществ поместим уголек, нагреем его в пламени спиртовки докрасна и опустим в сосуд с кислородом. Наблюдаем яркое горение уголька в кислороде. Уголь – простое вещество, образованное элементом углеродом. В реакции кислорода с углеродом образуется углекислый газ:

C + O2 = CO2

Стоит отметить, что многие химические вещества имеют тривиальные названия. Углекислый газ – это тривиальное название вещества. Тривиальные названия веществ используются в повседневной жизни, многие из них имеют давнее происхождение. Например, пищевая сода, бертолетова соль. Однако у каждого химического вещества есть и систематическое химическое название, составление которого регламентируется международными правилами – систематической химической номенклатурой. Так, углекислый газ имеет систематическое название оксид углерода (IV). Углекислый газ является сложным веществом, бинарным соединением, в состав которого входит кислород. Поместим в ложечку для сжигания веществ серу и нагреем. Сера плавится, затем загорается. На воздухе сера горит бледным, почти незаметным, синим пламенем. Внесем серу в сосуд с кислородом – сера горит ярким синим пламенем. В реакции серы с кислородом образуется сернистый газ:

S + O2 = SO2

Сернистый газ, как и углекислый газ, относится к группе оксидов. Это оксид серы (IV) – бесцветный газ с резким едким запахом. Теперь внесем в сосуд с кислородом подожженный красный фосфор. Фосфор горит ярким, ослепительным пламенем. Сосуд заполняется белым дымом. Белый дым – это продукт реакции, мелкие твердые частицы оксида фосфора (V):

4P + 5O2 = 2P2O5

В кислороде способны гореть не только неметаллы. Металлы также энергично взаимодействуют с кислородом. Например, магний горит в кислороде и на воздухе ослепительным белым пламенем. Продукт реакции – оксид магния:

2Mg + O2 = 2MgO

Попробуем сжечь в кислороде железо. Раскалим в пламени спиртовки стальную проволоку и быстро опустим в сосуд с кислородом. Железо горит в кислороде с образованием множества искр. Вещество, полученное в результате реакции, называют железной окалиной:

3Fe + 2O2 = Fe3O4.

Снопы искр, образующихся при горении бенгальского огня, объясняются сгоранием порошка железа, входящего в состав этих пиротехнических изделий. После рассмотренных реакций можно сделать важные выводы: кислород реагирует как с металлами, так и неметаллами; часто эти реакции сопровождаются горением веществ. Продуктами реакций кислорода с простыми веществами являются оксиды . Обратите внимание, что при взаимодействии кислорода с простыми веществами – металлами и неметаллами образуются сложные вещества – оксиды. Такой тип химических реакций называют реакциями соединения. Реакция соединения – реакция, в результате которой из двух или нескольких менее сложных по строению веществ, образуются более сложные по строению вещества

Взаимодействие кислорода со сложными веществами

Кислород способен вступать в реакции и со сложными веществами. В качестве примера рассмотрим реакцию, которая протекает при горении бытового газа, который состоит из метана CH4. По горению метана в конфорке печи можно сделать выводы, что реакция протекает с выделением энергии в виде тепла и света. Каковы продукты этой реакции?

СН4 + 2О2 = СО2 + 2Н2О.

Продукты реакции оксиды: углекислый газ (оксид углерода (IV)) и вода (оксид водорода). В реакции кислорода с минералом пиритом FeS2 (важный минерал железа и серы) получают оксиды серы и железа. Реакция происходит при нагревании:

4FeS2 + 11O2 = 8SO2 + 2Fe2O3

Окисление – горение и медленное окисление

Горение – это первая химическая реакция, с которой познакомился человек. Огонь… Можно ли представить наше существование без огня? Он вошел в нашу жизнь, стал неотделим от нее. Без огня человек не сварит пищу, сталь, без него невозможно движение транспорта. Огонь стал нашим другом и союзником, символом славных дел, добрых свершений, памятью о минувшем. С химической точки зрения горение – это химическая реакция, сопровождающаяся выделением потока раскаленных газов и энергии в виде тепла и света. Можно сказать, что кислород, вступая в реакцию с простыми веществами, окисляет их: Простое вещество + Кислород окисление → Продукты окисления (оксиды) + Энергия. Окисление веществ может и не сопровождаться горением, то есть выделением пламени. Такие процессы называют медленным окислением. Медленное окисление – процесс постепенного взаимодействия веществ с кислородом, с медленным выделением теплоты, не сопровождающийся горением. Так, например, углекислый газ образуется не только при горении углерода в кислороде, но и при медленном окислении органических веществ кислородом воздуха (гниении, разложении).
  • В реакции простых веществ с кислородом, образуются оксиды
  • Реакции простых веществ с кислородом протекают, как правило, при нагревании
  • Реакции простых веществ с кислородом – это реакции соединения
  • Тривиальные названия химических веществ не отражают химического состава веществ, используются в повседневной практике, многие из них сложились исторически
  • Систематические названия химических веществ отражают химический состав вещества, соответствуют международной систематической номенклатуре
  • Реакция соединения – реакция, в результате которой, из двух или нескольких менее сложных по строению веществ, образуются более сложные по строению вещества
  • Кислород способен реагировать со сложными веществами
  • Горение – химическая реакция, сопровождающаяся выделением энергии в виде тепла и света
  • Медленное окисление – процесс постепенного взаимодействия веществ с кислородом, с медленным выделением теплоты, не сопровождающийся горением
]]>

При и резке металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в смеси с технически чистым кислородом.

Кислород является самым распространенным элементом на земле , встречающимся в виде химических соединений с различными веществами: в земле - до 50% по массе, в соединении с водородом в воде - около 86% по массе и в воздухе - до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 0,1 МПа) - это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальном атмосферном давлении и температуре 0°С масса 1 м 3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении - 1,33 кг.

Кислород имеет высокую химическую активность , образуя соединения со всеми химическими элементами, кроме (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества теплоты, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда. Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами.

Всю кислородную аппаратуру, кислородопроводы и баллоны необходимо тщательно обезжиривать. способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры.

Отмеченные особенности кислорода следует всегда иметь в виду при использовании его в процессах газопламенной обработки.

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем их объемном содержании: азота - 78,08%, кислорода - 20,95%, аргона-0,94%, остальное - углекислый газ, закись азота и др. Кислород получают разделением воздуха на кислород и методом глубокого охлаждения (сжижения), попутно идет отделение аргона, применение которого при непрерывно возрастает. Азот применяют как защитный газ при сварке меди.

Кислород можно получать химическим способом или электролизом воды. Химические способы малопроизводительны и неэкономичны. При электролизе воды постоянным током кислород получают как побочный продукт при производстве чистого водорода.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации. В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа и охлаждают в теплообменниках до температуры сжижения, разница в температурах сжижения кислорода и азота составляет 13°С, что достаточно для их полного разделения в жидкой фазе.

Жидкий чистый кислород накапливается в воздухоразделительном аппарате, испаряется и собирается в газгольдере, откуда компрессором его накачивают в баллоны под давлением до 20 МПа.

Технический кислород транспортируют также по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту кислород доставляется в кислородных баллонах, и в жидком виде - в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм 3 жидкого кислорода при испарении дает 860 дм 3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

Для сварки и резки по -78 технический кислород выпускается трех сортов:

  • 1-й - чистотой не менее 99,7%
  • 2-й - не менее 99,5%
  • 3-й - не менее 99,2% по объему

Чистота кислорода имеет большое значение для кислородной резки. Чем меньше содержится в нем газовых примесей, тем выше скорость реза, чище и меньше расход кислорода.

§8 Элементы VI А группы.

Кислород, сера, селен, теллур, полоний.

Общие сведения элементов VI А группы:

Элементы VI А группы (кроме полония) называются халькогенидами. На внешнем электронном уровня этих элементов находятся шесть валентных электронов (ns 2 np 4),поэтому они в нормальном состоянии проявляют валентность 2, а в возбужденном -4 или 6 (кроме кислорода). Атом кислорода отличается от атомов других элементов подгруппы отсутствием d-подуровня во внешнем электронном слое, что обуславливает большие энергетические затраты на «распаривание» его электронов, некомпенсируемые энергией образования новых ковалентных связей. Поэтому ковалентность кислорода равна двум. Однако в некоторых случаях атом кислорода, обладающий неподеленными электронными парами, может выступать в качестве донора электронов и образовывать дополнительные ковалентные связи по донорно-акцепторному механизму.

Электроотрицательность этих элементов постепенно уменьшается в порядке О-S-Se-Те-Ро. Cтепень окисления от -2,+2,+4,+6 . Увеличивается радиус атома, что ослабляет неметаллические свойства элементов.

Элементы этой подгруппы образуют с водородом соединения вида H 2 R (H 2 О,H 2 S,H 2 Se,H 2 Те,H 2 Ро).Эти соединения растворяясь в воде, образуют кислоты. Кислотные свойства увеличиваются в направлении H 2 О→H 2 S→H 2 Se→H 2 Те→H 2 Ро. S,Se и Те образуют с кислородом соединения типа RO 2 и RO 3. Из этих оксидов образуются кислоты типа H 2 RO 3 и H 2 RO 4. С увеличением порядкового номера,силы кислот уменьшаются. Все они имеют окислительные свойства. Кислоты типа H 2 RO 3 проявляют и восстановительные свойства.

Кислород

Природные соединения и получения: Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе (21%); в связанном виде входит в состав воды (88,9%), минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Атмосферный воздух представляет собой смесь многих газов, основную часть которой составляют азот и кислород, и небольшое количество благородные газы, углекислый газ и водяные пары. Углекислый газ образуется в природе при горении дерева, угля и других видов топлива, дыхании животных, гниении. В некоторых местах земного шара CO 2 выделяется в воздух вследствие вулканической деятельности, а также из подземных источников.

Природный кислород состоит из трех стабильных изотопов: 8 16 О(99,75%), 8 17 О(0,04), 8 18 О(0,20). Искусственным путем были также получены изотопы 8 14 О, 8 15 О, 8 19 О.

Кислород был получен впервые в чистом виде К.В.Шееле в 1772 г., а затем в 1774 г. Д.Ю.Пристли, который выделил его из HgO. Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье,подробно изучивший свойства этого газа, установил, что он является основной частью воздуха.

В лаборатории кислород получается следующими методами:

Э лектролизом воды. Чтобы увеличить электропроводность воды в нее добавляют раствор щелочи (обычно 30%-ый KOH) или сульфаты щелочных металлов:

В общем виде: 2H 2 О →2H 2 +О 2

На катоде: 4H 2 О+4e¯→ 2H 2 +4OH¯

На аноде: 4OH−4е→2H 2 О+О 2

- Разложением кислородосодержащих соединений:

Термическое разложение Бертолетовой соли под действием катализатора MnO 2.

KClO 3 →2KCl+3О 2

Термическое разложение перманганата калия

KMnO 4 →K 2 MnO 4 +MnO 2 +О 2.

Термическое разложение нитратов щелочных металлов:

2KNO 3 →2KNO 2 +О 2.

Разложением пероксидов:

2H 2 О 2 →2H 2 О+О 2.

2ВаО 2 →2ВаО+О 2.

Термическим разложением оксида ртути (II):

2HgO→2HgO+О 2.

Взаимодействием пероксидов щелочных металлов с оксидом углерода (IV):

2Na 2 О 2 +2CO 2 →2Na 2 CO 3 +О 2.

Термическим разложением хлорной извести в присутствии катализатора - солей кобальта:

2Ca(OCl)Cl →2CaCl 2 +О 2.

Окислением пероксида водорода перманганатом калия в кислой среде:

2KMnO 4 +H 2 SO 4 +5H 2 О 2 →K 2 SO 4 +2Mn SO 4 +8H 2 О+5О 2.

В промышленности: В настоящее время в промышленности кислород получают фракционной перегонкой жидкого воздуха. При слабом нагревании жидкого воздуха из него сначала отделяется азот (t кип (N 2)=-196ºC), затем выделяется кислород (t кип (О 2)=-183ºС).

Кислород полученный этим способом содержит примеси азота. Поэтому для получения чистого кислорода полученную смесь заново дистиллируют и в конечном итоге получается 99,5% кислород. Кроме того некоторое количество кислорода получают электролизом воды. Электролитом служит 30% раствор KOH.

Кислород обычно хранят в баллонах синего цвета под давлением 15МПа.

Физико-химические свойства: Кислород - газ без цвета, запаха, вкуса, немного тяжелее воздуха, слабо растворяется в воде. Кислород при давлении 0,1 МПа и температуре -183ºС переходит в жидкое состояние, при -219ºС замерзает. В жидком и твердом состоянии притягивается магнитом.

Согласно методу валентных связей строение молекулы кислорода, представленное схемой -:Ö::Ö:, не объясняет большую прочность молекулы, имеющей паромагнитные свойства, то есть неспаренные электроны в нормальном состоянии.

В результате связи электронов двух атомов образуется одна общая электронная пара, после этого неспаренный электрон в каждом атоме образует взаимную связь с неразделенной парой другого атома и между ними образуется трех электронная связь. В возбужденном состоянии молекула кислорода проявляет диамагнитные свойства, которым соответствует строение по схеме:Ö=Ö:,

Для заполнения электронного уровня в атоме кислорода не хватает двух электронов. Поэтому кислород в химических реакциях может легко присоединять два электрона и проявлять степень окисления -2. Кислород только в соединениях с более электроотрицательным элементом фтором проявляет степень окисления +1 и +2: О 2 F 2 ,ОF 2.

Кислород - сильный окислитель. Он не взаимодействует только с тяжелыми инертными газами (Kr,Xe,He,Rn), с золотом и платиной. Оксиды этих элементов образуются другими путями. Кислород входит в реакции горения, окисления как с простыми веществами так и со сложными. При взаимодействии неметаллов с кислородом образуются кислотные или соленеобразующие оксиды, а при взаимодействии металлов образуются амфотерные или смешанные оксиды Так, с фосфором кислород реагирует при температуре ~ 60 °С,

4P+5О 2 → 2Р 2 О 5

С металлами- оксиды соответствующих металлов

4Al + 3O 2 → 2Al 2 O 3

3Fe + 2O 2 → Fe 3 O 4

при нагревании щелочных металлов в сухом воздухе только литии образует оксид Li 2 O, а остальные-пероксиды и супероксиды:

2Na+O 2 →Na 2 O 2 K+O 2 →KO 2

С водородом кислород взаимодействует при 300 °С:

2Н 2 + О 2 = 2Н 2 О.

При взаимодействии с фтором он проявляет восстановительные свойства:

O 2 + F 2 = F 2 O 2 (в электрическом разряде),

с серой - при температуре около 250 °С:

S + О 2 = SO 2 .

С графитом кислород реагирует при 700 °С

С + О 2 = СО 2 .

Взаимодействие кислорода с азотом начинается лишь при 1200°С или в электрическом разряде.

Элементы, расположенные в главной подгруппе VI группы периодической системы элементов Д. И. Менделеева.

Распределение электронов по энергетическим уравнениям атомов элементов группы кислородаТаблица 13

Элемент

Заряд ядра

Энергетические уровни

Радиус атома Å

K

L

M

N

O

0,60

1,04

1,16

1,43

Рассмотрение атомных структур элементов главной подгруппы VI группы показывает, что все они имеют шестиэлектронную структуру внешнего слоя (табл. 13) и в связи с этим обладают сравнительно высокими значениями электроотрицательности. Наибольшей электроотрицательностью обладает , наименьшей - , что объясняется изменением величины атомного радиуса. Особое место кислорода в этой группе подчеркивается тем, что , и теллур могут непосредственно соединяться с кислородом, но не могут соединяться между собой.

Элементы группы кислорода также принадлежат к числу р -элементов, так как у них достраивается р -оболочка. Для всех элементов семейства, кроме самого кислорода, валентными являются 6 электронов внешнего слоя.
В окислительно-восстановительных реакциях элементы группы кислорода часто проявляют окислительные свойства. Наиболее сильно окислительные свойства выражены у кислорода.
Для всех элементов главной подгруппы VI группы характерна отрицательная степень окисления -2. Однако для серы, селена и теллура наряду с этим возможны и положительные степени окисления (максимальная +6).
Молекула кислорода, как всякого простого газа, двухатомна, построена по типу ковалентной связи, образованной посредством двух электронных пар. Следовательно, кислород двухвалентен при образовании простого .
Сера - твердое вещество. В состав молекулы входит 8 атомов серы (S8), но они соединены в своеобразное кольцо, в котором каждый атом серы соединен лишь с двумя соседними атомами ковалентной связью

Таким образом, каждый атом серы, имея с двумя соседними атомами по одной общей электронной паре, сам по себе является двухвалентным. Сходные молекулы образуют селен (Se8) и теллур (Te8).

1. Составьте рассказ о группе кислорода по следующему плану: а) положение в периодической системе; б) заряды ядер и. число нейтронов в ядре; в) электронные конфигурации; г) структура кристаллической решетки; д) возможные степени окисления кислорода и всех остальных элементов этой группы.
2. В чем сходство и различие атомных структур и электронных конфигураций атомов элементов главных подгрупп VI и VII групп?
3. Сколько валентных электронов имеется у элементов главной подгруппы VI группы?
4. Как должны себя вести элементы главной подгруппы VI группы в окислительно-восстановительных реакциях?
5. Какой из элементов главной подгруппы VI группы является наиболее электроотрицательным?

При рассмотрении элементов главной подгруппы VI группы мы впервые встречаемся с явлением аллотропии. Один и тот же элемент в свободном состоянии может образовывать два или несколько простых веществ. Такое явление называется аллотропией, а сами называются аллотропными видоизменениями.

Запишите эту формулировку в тетрадь.

Например, элемент кислород способен образовывать два простых - кислород и озон.
Формула простого кислорода O2, формула простого вещества озона O3. Построены их молекулы по разному:


Кислород и озон - аллотропные видоизменения элемента кислорода.
Сера также может образовывать несколько аллотропных видоизменений (модификаций). Известна ромбическая (октаэдрическая), пластическая и моноклиническая сера. Селен и теллур также образуют несколько аллотропных видоизменений. Следует заметить, что явление аллотропии характерно для многих элементов. Различия в свойствах разных аллотропных видоизменений мы рассмотрим при изучении элементов.

6. В чем отличие структуры молекулы кислорода от структуры молекулы озона?

7. Какого типа связь в молекулах кислорода и озона?

Кислород. Физические свойства, физиологическое действие, значение кислорода в природе

Кислород - наиболее легкий элемент главной подгруппы VI группы. Атомный вес кислорода 15,994. 31,988. Атом кислорода имеет самый малый радиус из элементов этой подгруппы (0,6 Å). Электронная конфигурация атома кислорода: ls 2 2s 2 2p 4 .

Распределение электронов по орбиталям второго слоя указывает на , что кислород имеет на р-орбиталях два непарных электрона, которые могут быть легко использованы на образование химической связи между атомами. Характерная степень окисления кислорода.
Кислород представляет собой газ, не имеющий цвета и запаха. Он тяжелее воздуха, при температуре -183° превращается в жидкость голубого цвета, а при температуре -219° затвердевает.

Плотность кислорода равна 1,43 г/л. Кислород плохо растворим в воде: в 100 объемах воды при 0° растворяются 3 объема кислорода. Поэтому кислород можно держать в газометре (рис. 34) - приборе для хранения газов, нерастворимых и малорастворимых в воде. Чаще всего в газометре хранят кислород.
Газометр состоит из двух главных частей: сосуда 1, служащего для хранения газа, и большой воронки 2 с краном и с длинной трубкой, доходящей почти до дна сосуда 1 и служащей для подачи воды в прибор. Сосуд 1 имеет три тубуса: в тубус 3 с притертой внутренней поверхностью вставляют, воронку 2 с краном, в тубус 4 вставляют газоотводную трубку, снабженную краном; тубус 5 внизу служит для выпуска воды из прибора при его зарядке и разрядке. В заряженном газометре сосуд 1 заполнен кислородом. На дне сосуда находится , в которую опущен конец трубки воронки 2.

Рис. 34.
1 - сосуд для хранения газа; 2 - воронка для подачи воды; 3 - тубус с притертой поверхностью; 4 - тубус для выведения газа; 5 - тубус для выпуска воды при зарядке аппарата.

Если нужно получить из газометра кислород, сначала открывают кран воронки, и слегка сжимает кислород, находящийся в газометре. Затем открывают кран на газоотводной трубке, через который выходит кислород, вытесняемый водой.

В промышленности кислород хранят в стальных баллонах в сжатом состоянии (рис. 35, а), или в жидком виде в кислородных «танках» (рис. 36).

Рис. 35. Кислородный баллон

Выпишите из текста названия приборов, предназначенных для хранения кислорода.
Кислород является наиболее распространенным элементом. Он составляет почти 50% веса всей земной коры (рис. 37). Человеческий организм содержит 65% кислорода, входящего в состав различных органических веществ, из которых построены ткани и органы. В воде около 89% кислорода. В атмосфере на кислород приходится 23% по весу и 21% по объему. Кислород входит в состав самых разнообразных горных пород (например, известняка, мела, мрамора CaCO3, песка SiO2), руд различных металлов (магнитного железняка Fe3O4, бурого железняка 2Fe2O3 · nH2O, красного железняка Fe2O3, боксита Аl2O3 · nН2O и т. д.). Кислород входит в состав большинства органических веществ.

Физиологическое значение кислорода огромно. Это единственный газ, который живые организмы могут использовать для дыхания. Отсутствие кислорода вызывает остановку жизненных процессов и гибель организма. Без кислорода человек может прожить всего несколько минут. При дыхании поглощается кислород, который принимает участие в окислительно-восстановительных процессах, происходящих в организме, а выделяются продукты окисления органических веществ - , двуокись углерода и другие вещества. Как наземные, так и водные живые организмы дышат кислородом: наземные - свободным кислородом атмосферы, а водные - кислородом, растворенным в воде.
В природе происходит своеобразный круговорот кислорода. Кислород из атмосферы поглощается животными, растениями, человеком, расходуется на процессы горения топлива, гниение и прочие окислительные процессы. Двуокись углерода и вода, образующиеся в процессе окисления, потребляются зелеными растениями, в которых с помощью хлорофилла листьев и солнечной энергии осуществляется процесс фотосинтеза, т. е. синтеза органических веществ из двуокиси углерода и воды, сопровождающегося выделением кислорода.
Для обеспечения кислородом одного человека нужны кроны двух больших деревьев. Зеленые растения поддерживают постоянный состав атмосферы.

8. Каково значение кислорода в жизни живых организмов?
9. Как пополняется запас кислорода в атмосфере?

Химические свойства кислорода

Свободный кислород, вступая в реакции с простыми и сложными веществами, ведет себя обычно как .

Рис. 37.

Степень окисления, которую он приобретает при этом, всегда -2. В непосредственное взаимодействие с кислородом вступают многие элементы, за исключением благородных металлов, элементов с близкими к кислороду значениями электроотрицательности () и инертных элементов.
В результате соединения кислорода с простыми и сложными веществами образуются . Многие горят в кислороде, хотя на воздухе либо не горят, либо горят очень слабо. сгорает в кислороде ярко-желтым пламенем; при этом образуется перекись натрия (рис. 38):
2Na + O2 =Na2O2,
Сера горит в кислороде ярко-голубым пламенем с образованием сернистого ангидрида:
S + O2 = SO2
Древесный уголь на воздухе едва тлеет, а в кислороде сильно раскаляется и сгорает с образованием двуокиси углерода (рис. 39):
С + O2 = СO2

Рис. 36.

Горит в кислороде белым, ослепительно ярким пламенем, причем образуется твердая белая пятиокись фосфора:
4Р + 5O2 = 2Р2O5
горит в кислороде, разбрасывая искры и образуя железную окалину (рис. 40).
Горят в кислороде и органические вещества, например метан СН4, входящий состав природного газа: СH4 + 2O2 = CO2 + 2H2O
Горение в чистом кислороде происходит гораздо интенсивнее, чем на воздухе, и позволяет получить Значительно более высокие температурь. Это явление используют для интенсификации ряда химических процессов и более эффективного сжигания топлива.
В процессе дыхания кислород, соединяясь с гемоглобином крови, образует оксигемоглобин, который, являясь весьма нестойким соединением, легко разлагается в тканях с образованием свободного кислорода, идущего на окисление. Гниение, также являются окислительными процессами, протекающими с участием кислорода.
Распознают чистый кислород, внося в сосуд, где предполагается его наличие, тлеющую лучинку. Она ярко вспыхивает - это и является качественной пробой на кислород.

10. Каким образом, имея в своем распоряжении лучинку, можно распознать находящиеся в разных сосудах кислород, двуокись углерода? 11. Какой объем кислорода пойдет на сжигание 2 кг каменного угля, содержащего в сечем составе 70% углерода, 5% водорода, 7% , кислорода, остальное- негорючие компоненты?

Рис. 38. Горение натрия Рис. 39. Горение угля Рис. 40. Горение железа в кислороде.

12. Хватит ли 10 л кислорода для сжигания 5 г фосфора?
13. 1 м3 газовой смеси, содержащей 40% окиси углерода, 20% азота, 30% водорода н 10% двуокиси углерода сожгли в кислороде. Какой объем кислорода был израсходован?
14. Можно ли сушить кислород, пропуская его через: а) серную кислоту, б) хлорид кальция, в) фосфорный ангидрид, г) металлический ?
15. Как освободить двуокись углерода от примеси кислорода и наоборот, как освободить кислород от примеси двуокиси углерода?
16. 20 л кислорода, содержащего примесь двуокиси углерода пропустили через 200 мл 0,1 н. раствора бария. В результате катион Ва 2+ был полностью осажден. Сколько двуокиси углерода (в процентах) содержал исходный кислород?

Получение кислорода

Получают кислород несколькими способами. В лаборатории кислород получают из Кислородсодержащих веществ, которые могут легко его отщеплять, например из перманганата калия КМnO4 (рис. 41) или из бертолетовой соли КСlO3:
2КМnО4 = K2MnO4 + МnО2 + O2

2КСlO3 = 2КСl + O2
При получении кислорода из бертолетовой соли для ускорения реакции должен присутствовать катализатор - двуокись марганца. Катализатор ускоряет разложение и делает его более равномерным. Без катализатора может

Рис. 41. Прибор для получения кислорода лабораторный способом из перманганата калия. 1 - перманганат калия; 2 - кислород; 3 - вата; 4 - цилиндр - сборник.

произойти взрыв, если бертолетова соль взята в большом количестве и особенно если она загрязнена органическими веществами.
Из перекиси водорода кислород получают также в присутствии катализатора - двуокиси марганца МnО2 по уравнению:
2Н2O2[МnО2] = 2Н2O + О2

■ 17. Зачем при разложении бертолетовой соли добавляют МnО2?
18. Образующийся при разложении КМnO4 кислород можно собирать над водой. Отразите это в схеме прибора.
19. Иногда при отсутствии в лаборатории двуокиси марганца вместо нее в бертолетову соль добавляют немного остатка после прокаливания перманганата калия. Почему возможна такая замена?
20. Какой объем кислорода выделится при разложении 5 молей бертолетовой соли?

Кислород может быть получен также разложением Нитратов при нагревании выше температуры плавления:
2KNO3 = 2KNO2 + О2
В промышленности кислород получают в основном из жидкого воздуха. Переведенный в жидкое состояние воздух подвергают испарению. Сначала улетучивается (его температура кипения - 195,8°), а кислород остается (его температура кипения -183°). Этим способом кислород получается почти в чистом виде.
Иногда при наличии дешевой электроэнергии кислород получают электролизом воды:
Н2O ⇄ Н + + OН —
Н + + е — → Н 0
на катоде
2ОН — — е — → H2O + О; 2О = О2
на аноде

■ 21. Перечислите известные вам лабораторные и промышленные способы получения кислорода. Запищите их в тетрадь, сопровождая каждый способ уравнением реакции.
22. Являются ли реакции, используемые для получения кислорода, окислительно-восстановительными? Дайте обоснованный ответ.
23. Взято по 10 г следующих веществ; перманганата калия, бертолетовой соли, нитрата калия. В каком случае удастся получить наибольший объем кислорода?
24. В кислороде, полученном при нагревании 20 г перманганата калия, сожгли 1 г угля. Какой процент перманганата подвергся разложению?

Кислород - самый распространенный элемент в природе. Он широко применяется в медицине, химии, промышленности и т. д. (рис. 42).

Рис. 42. Применение кислорода.

Летчики на больших высотах, люди, работающие в атмосфере вредных газов, занятые на подземных и подводных работах, пользуются кислородными приборами (рис. 43).

В тех случаях, когда затруднено вследствие того или иного заболевания, человеку дают дышать чистым кислородом из кислородной подушки или помещают его в кислородную палатку.
В настоящее время для интенсификации металлургических процессов широко применяют воздух, обогащенный кислородом, или чистый кислород. Кислородно-водородная и кислородно-ацетиленовая горелки применяются для сварки и резки металлов. Пропитывая жидким кислородом горючие вещества: древесные опилки, угольный порошок и пр., получают взрывчатые смеси, называемые оксиликвитами.

■ 25. Начертите таблицу в тетради и заполните её.

Озон О3

Как уже говорилось, элемент кислород может образовывать еще одно аллотропное видоизменение - озон О3. Озон кипит при -111°, а затвердевает при -250°. В газообразном состоянии он голубого цвета, в жидком - синего. озона в воде гораздо выше, чем кислорода: в 100 объемах воды растворяется 45 объемов озона.

Озон отличается от кислорода тем, что его молекула состоит из трех, а не двух атомов. В связи с этим молекула кислорода намного более стойкая, чем молекула озона. Озон легко распадается по уравнению:
О3 = О2 + [O]

Выделение атомарного кислорода при распаде озона делает его гораздо более сильным окислителем, чем кислород. Озон имеет запах-свежести («озон» в переводе значит «пахучий»). В природе он образуется под действием тихого электрического разряда и в сосновых лесах. Больным с заболеванием легких рекомендуется больше бывать в сосновых лесах. Однако продолжительное пребывание в атмосфере, сильно обогащенной озоном, может оказать отравляющее действие на организм. Отравление сопровождается головокружением, тошнотой, кровотечением из носа. При хрони-ческих отравлениях могут возникнуть сердечные заболевания.
В лаборатории озон получают из кислорода в озонаторах (рис. 44). В стеклянную трубку 1, обмотанную сна- ружи проволокой 2, пропускают кислород. Внутри трубки проходит проволока 3. Обе эти проволоки: соединены с полюсами источника тока, создающего на указанных электродах высокое напряжение. Между электродами происходит тихий электрический разряд, благодаря чему из кислорода образуется озон.

Рис 44; Озонатор. 1 - стеклянный баллон; 2 - наружная обмотка; 3 -проволока внутри трубки; 4 - раствор йодида калия с крахмалом

3О2 = 2О3
Озон является очень сильным окислителем. Он значительно энергичнее, чем кислород, вступает в реакции и вообще намного активнее кислорода. Например, в отличие от кислорода он может вытеснить из йодистого водорода или йодистых солей:
2KI + О3 + Н2О = 2КОН + I2 + O2

Озона в атмосфере очень мало (около одной миллионной доли процента), но он играет существенную, роль в поглощении ультрафиолетовых солнечных лучей, по-этому они попадают на землю в меньшем количестве и не оказывают губительного действия на живые организмы.
Применяется озон в небольшом количестве главным образом для кондиционирования воздуха, а также в химии.

■ 26. Что такое аллотропные видоизменения?
27. Почему йодкрахмальная бумага синеет под действием озона? Дайте обоснованный ответ.
28. Почему молекула кислорода значительно устойчивее молекулы озона? Обоснуйте свой ответ с точки зрения внутримолекулярной структуры.