Open
Close

Почему самолёты не могут взлететь при сильной жаре. На какой высоте летают самолеты

Вы хотите преодолеть страх перед полетами? Самый лучший способ — поподробнее узнать о том, как самолет летает, с какой скоростью он движется, на какую высоту поднимается. Люди боятся неизвестности, а когда вопрос изучен и рассмотрен, то все становится простым и понятным. Поэтому обязательно прочитайте о том, как летает самолет — это первый шаг в борьбе с аэрофобией.

Если посмотреть на крыло, то вы увидите, что оно не плоское. Нижняя его поверхность гладкая, а верхняя имеет выпуклую форму. За счет этого при повышении скорости воздушного судна меняется давление воздуха на крыло. Снизу крыла скорость потока меньше, поэтому давление больше. Сверху скорость потока больше, а давление меньше. Именно за счет этого перепада давления крыло и тянет самолет вверх. Данная разница между нижним и верхним давлением называется подъемной силой крыла. По сути, при разгоне воздушное судно выталкивает вверх при достижении определенной скорости (разницы давлений).

Воздух обтекает крыло с разной скоростью, выталкивая самолет вверх

Данный принцип был обнаружен и сформулирован родоначальником аэродинамики Николаем Жуковским еще в 1904 году, и уже через 10 лет был успешно применен во время первых полетов и испытаний. Площадь, форма крыла и скорость полета рассчитаны таким образом, чтобы без проблем поднимать в воздух многотонные самолеты. Большинство современных лайнеров летают со скоростями от 180 до 260 километров в час — этого вполне достаточно для уверенного держания в воздухе.

На какой высоте летают самолеты?

Разобрались, почему летают самолеты? Теперь мы расскажем вам о том, на какой высоте они летают. Пассажирские воздушные судна “оккупировали” коридор от 5 до 12 тысяч метров. Крупные пассажирские лайнеры обычно летают на высоте 9-12 тысяч, более мелкие — 5-8 тысяч метров. Данная высота оптимальна для движения воздушных суден: на такой высоте сопротивление воздуха снижается в 5-7 раз, но кислорода еще достаточно для нормальной работы двигателей. Выше 12 тысяч самолет начинает проваливаться — разреженный воздух не создает нормальную подъемную силу, а также наблюдается острая нехватка кислорода для горения (падает мощность двигателей). Потолок для многих лайнеров — 12 200 метров.

Обратите внимание: самолет, который летит на высоте в 10 тысяч метров, экономит примерно 80% горючего по сравнению с тем, если бы он летел на высоте в 1000 метров.

Какая скорость самолета при взлете

Давайте рассмотрим, как взлетает самолет. Набирая определенную скорость он отрывается от земли. В этот момент авиалайнер наиболее неуправляем, поэтому взлетные полосы делают со значительным запасом по длине. Скорость отрыва зависит от массы и формы воздушного судна, а также от конфигурации его крыльев. Для примера мы приведем табличные значения для наиболее популярных видов самолета:

  1. Boeing 747 -270 км/ч.
  2. Airbus A 380 — 267 км/ч.
  3. Ил 96 — 255 км/ч.
  4. Boeing 737 — 220 км/ч.
  5. Як-40 -180 км/ч.
  6. Ту 154 — 215 км/ч.

В среднем, скорость отрыва у большинства современных лайнеров 230-250 км/ч. Но она непостоянна — все зависит от ускорения ветра, массы летательного аппарата, взлетной полосы, погоды и других факторов (значения могут отличаться на 10-15 км/ч в ту или другую сторону). Но на вопрос: при какой скорости взлетает самолет можно отвечать — 250 километров в час, и вы не ошибетесь.

Разные типы самолетов взлетают с разной скоростью

На какой скорости садится самолет

Посадочная скорость, также, как и взлетная, может сильно отличаться в зависимости от моделей воздушного судна, площади его крыла, веса, ветра и других факторов. В среднем, она варьируется от 220 до 250 километров в час.

В современном мире многие люди интересуются наукой и техникой и пытаются хотя бы в общих чертах понять, как работают вещи, которые их окружают. Благодаря этому стремлению к просвещению существует научно-просветительская литература и сайты, подобные Гиктаймсу. А поскольку читать и воспринимать ряды формул большинству людей затруднительно, то излагаемые в подобных изданиях теории неизбежно подвергаются значительному упрощению в попытке донести до читателя «суть» идеи с помощью простого и понятного объяснения которое легко воспринять и запомнить. К сожалению, некоторые из подобных «простых объяснений» являются в корне неверными , но при этом оказываются настолько «очевидными», что не подвергаясь особому сомнению начинают кочевать из одного издания в другое и нередко становятся доминирующей точкой зрения, несмотря на свою ошибочность.

В качестве одного из примеров попробуйте ответить на простой вопрос: «откуда возникает подъемная сила в крыле самолета»?

Если в Вашем объяснении фигурируют «разная длина верхней и нижней поверхности крыла», «разная скорость потока воздуха на верхней и нижней кромках крыла» и «закон Бернулли», то я вынужден Вам сообщить, что Вы скорее всего стали жертвой популярнейшего мифа, который преподают порою даже в школьной программе.

Давайте для начала напомним, о чем идет речь

Объяснение подъемной силы крыла в рамках мифа выглядит следующим образом:

  1. Крыло имеет несимметричный профиль снизу и сверху
  2. Непрерывный поток воздуха разделяется крылом на две части, одна из которых проходит над крылом, а другая под ним
  3. Мы рассматриваем ламинарное обтекание, в котором поток воздуха плотно прилегает к поверхности крыла
  4. Поскольку профиль несимметричен, то для того чтобы снова сойтись за крылом в одной точке «верхнему» потоку нужно проделать больший путь, чем «нижнему», поэтому воздуху над крылом приходится двигаться с большей скоростью чем под ним
  5. Согласно закону Бернулли статическое давление в потоке уменьшается с ростом скорости потока, поэтому в потоке над крылом статическое давление будет ниже
  6. Разница давлений в потоке под крылом и над ним и составляет подъемную силу
А для демонстрации этой идеи достаточно простого гибкого и легкого листа бумаги. Берем лист, подносим его ко рту, и дуем над ним чтобы создать модель в которой поток воздуха над листом бумаги движется быстрее чем под ним. И вуаля - с первой или второй попытки лист бумаги презрев тяготение действительно поднимается под действием подъемной силы вверх. Теорема доказана!

… или все-таки нет?..

Существует история (я правда не знаю насколько она правдива), что одним из первых людей предложивших, подобную теорию был не кто иной, как сам Альберт Эйнштейн. Согласно этой истории в 1916 году он написал соответствующую статью и на её основе предложил свою версию «идеального крыла», которое, по его мнению, максимизировало разницу скоростей над крылом и под ним, и в профиль выглядело примерно вот так:

В аэродинамической трубе продули полноценную модель крыла с этим профилем, но увы - её аэродинамические качества оказались на редкость плохими. В отличие - парадоксально! - от многих крыльев с идеально симметричным профилем, в которых путь воздуха над крылом и под ним должен был быть принципиально одинаков. В рассуждениях Эйнштейна явно что-то было неправильно. И вероятно наиболее явным проявлением этой неправильности было то что некоторые пилоты в качестве акробатического трюка стали летать на своих самолетах вверх ногами. У первых самолетов, которые пробовали перевернуться в полете, возникали проблемы с топливом и маслом, которое не текло туда, куда нужно, и вытекало там, где не нужно, но после того, как в 30-х годах прошлого века энтузиастами аэробатики были созданы топливные и масляные системы, способные работать длительное время в перевернутом положении, полет «вверх ногами» стал обычным зрелищем на авиашоу. В 1933, к примеру, один американец и вовсе совершил полет вверх ногами из Сан-Диего в Лос-Анджелес. Каким-то волшебным образом перевернутое крыло по-прежнему генерировало подъемную силу, направленную вверх.

Посмотрите на эту картинку - на ней изображен самолет, аналогичный тому, на котором был установлен рекорд полета в перевернутом положении. Обратите внимание на обычный профиль крыла (Boeing-106B airfoil) который, согласно приведенным выше рассуждениям, должен создавать подъемную силу от нижней поверхности к верхней.

Итак, у нашей простой модели подъемной силы крыла есть некоторые трудности, которые можно в целом свести к двум простым наблюдениям:

  1. Подъемная сила крыла зависит от его ориентации относительно набегающего потока воздуха - угла атаки
  2. Симметричные профили (в том числе и банальный плоский лист фанеры) тоже создают подъемную силу
В чем же причина ошибки? Оказывается, что в приведенном в начале статьи рассуждении совершенно неверен (и вообще говоря, просто взят с потолка) пункт №4. Визуализация потока воздуха вокруг крыла в аэродинамической трубе показывает, что фронт потока, разделенный на две части крылом, вовсе не смыкается обратно за кромкой крыла.

Проще говоря, воздух «не знает», что ему нужно двигаться с какой-то определенной скоростью вокруг крыла, чтобы выполнить какое-то условие, которое нам кажется очевидным. И хотя скорость потока над крылом действительно выше, чем под ним, это является не причиной образования подъемной силы а следствием того, что над крылом существует область пониженного давления, а под крылом - область повышенного. Попадая из области нормального давления в разреженную область, воздух разгоняется перепадом давлений, а попадая в область с повышенным давлением - тормозится. Важный частный пример столь «не-бернуллевского» поведения наглядно демонстрируют экранопланы: при приближении крыла к земле его подъемная сила возрастает (область повышенного давления поджимается землей), тогда как в рамках «бернуллевских» рассуждений крыло на пару с землей формируют нечто вроде сужающегося тоннеля что в рамках наивных рассуждений должно было бы разгонять воздух и притягивать за счет этого крыло к земле подобно тому, как это делается в схожих по смыслу рассуждениях о «взаимном притяжении проходящих на параллельных курсах пароходах». Причем в случае экраноплана ситуация во многом даже хуже, поскольку одна из «стенок» этого тоннеля движется с высокой скоростью навстречу крылу, дополнительно «разгоняя» тем самым воздух и способствуя еще большему снижению подъемной силы. Однако реальная практика «экранного эффекта» демонстрирует прямо противоположную тенденцию, наглядно демонстрируя опасность логики рассуждений о подъемной силе построенных на наивных попытках угадать поле скоростей потока воздуха вокруг крыла.

Как это ни странно, значительно более приближенное к истине объяснение дает другая неверная теория подъемной силы, отвергнутая еще в XIX веке. Сэр Исаак Ньютон предполагал, что взаимодействие объекта с набегающим воздушным потоком можно моделировать, предположив, что набегающий поток состоит из крошечных частиц, ударяющихся об объект и отскакивающих от него. При наклонном расположении объекта относительно набегающего потока частицы будут преимущественно отражаться объектом вниз и в силу закона сохранения импульса при каждом отклонении частицы потока вниз объект будет получать импульс движения вверх. Идеальным крылом в подобной модели был бы плоский воздушный змей, наклоненный к набегающему потоку:

Подъемная сила в этой модели возникает за счет того, что крыло направляет часть воздушного потока вниз, это перенаправление требует приложения определенной силы к потоку воздуха, а подъемная сила является соответствующей силой противодействия со стороны воздушного потока на крыло. И хотя исходная «ударная» модель вообще говоря неверна, в подобной обобщенной формулировке это объяснение действительно верно . Любое крыло работает за счет того, что отклоняет часть набегающего потока воздуха вниз и это, в частности, объясняет, почему подъемная сила крыла пропорциональна плотности потока воздуха и квадрату его скорости. Это дает нам первое приближение к правильному ответу: крыло создает подъемную силу потому что линии тока воздуха после прохождения крыла в среднем оказываются направлены вниз . И чем сильнее мы отклоняем поток вниз (например увеличивая угол атаки) - тем подъемная сила оказывается больше.

Немного неожиданный результат, правда? Однако он пока никак не приближает нас к пониманию того, почему воздух после прохождения крыла оказывается движущимся вниз. То, что Ньютоновская ударная модель неверна, было показано экспериментально опытами, которые продемонстрировали что реальное сопротивление потока ниже, чем предсказывает Ньютоновская модель, а генерируемая подъемная сила - выше. Причиной этих расхождений является то, что в модели Ньютона частички воздуха никак не взаимодействуют друг с другом, тогда как реальные линии тока не могут пересекать друг друга, так как это показано на рисунке выше. «Отскакивающие» под крылом вниз условные «частички воздуха» сталкиваются с другими и начинают «отталкивать» их от крыла еще до того, как они с ним столкнутся, а частички воздушного тока, оказавшиеся над крылом, «выпихивают» частички воздуха, расположенные ниже, в пустое пространство, остающееся за крылом:

Говоря другими словами, взаимодействие «отскочившего» и «набегающего» потоков создает под крылом область высокого давления (красную), а «тень», пробиваемая крылом в потоке, образует область низкого давления (синюю). Первая область отклоняет поток под крылом вниз еще до того, как этот поток соприкоснется с его поверхностью, а вторая заставляет поток над крылом изгибаться вниз, хотя он с крылом не соприкасался вообще. Совокупное давление этих областей по контуру крыла, собственно, и образует в итоге подъемную силу. При этом интересный момент состоит в том, что неизбежно возникающая перед крылом область высокого давления у правильно спроектированного крыла соприкасается с его поверхностью лишь по небольшому участку в передней кромке крыла, тогда как область высокого давления под крылом и область низкого давления над ним соприкасаются с крылом на значительно большой площади. В результате подъемная сила крыла формируемая двумя областями вокруг верхней и нижней поверхностей крыла может быть намного больше, чем сила сопротивления воздуха, которую обеспечивает воздействие области высокого давления, расположенной перед передней кромкой крыла.

Поскольку наличие областей разного давления изгибает линии тока воздуха, то часто удобно определять эти области именно по этому изгибу. К примеру, если линии тока над крылом «загибаются вниз», то в этой области существует градиент давления направленный сверху вниз. И если на достаточно большом удалении над крылом давление является атмосферным, то по мере приближения к крылу сверху вниз давление должно падать и непосредственно над крылом оно окажется ниже атмосферного. Рассмотрев аналогичное «искривление вниз», но уже под крылом, мы получаем, что если начать с достаточно низкой точки под крылом, то, приближаясь к крылу снизу вверх, мы придем в область давления, которое будет выше атмосферного. Аналогичным образом «расталкивание» линий тока перед передней кромкой крыла соответствует существованию перед этой кромкой области повышенного давления. В рамках подобной логики можно сказать, что крыло создает подъемную силу, изгибая линии тока воздуха вокруг крыла . Поскольку линии тока воздуха как бы «прилипают» к поверхности крыла (эффект Коанда) и друг к другу, то, изменяя профиль крыла, мы заставляем воздух двигаться вокруг него по искривленной траектории и формировать в силу этого нужный нам градиент давлений. К примеру, для обеспечения полета вверх ногами достаточно создать нужный угол атаки, направив нос самолета в сторону от земли:

Снова немного неожиданно, правда? Тем не менее это объяснение уже ближе к истине, чем исходная версия «воздух ускоряется над крылом, потому что над крылом ему нужно пройти большее расстояние, чем под ним». Кроме того, в его терминах легче всего понять явление, которое называется «срывом потока» или «сваливанием самолета». В нормальной ситуации увеличивая угол атаки крыла мы увеличиваем тем самым искривление воздушного потока и соответственно подъемную силу. Ценою за это является увеличение аэродинамического сопротивления, поскольку область низкого давления постепенно смещается из положения «над крылом» в положение «слегка за крылом» и соответственно начинает притормаживать самолет. Однако после некоторого предела ситуация неожиданно резко изменяется. Синяя линия на графике - коэффициент подъемной силы, красная - коэффициент сопротивления, горизонтальная ось соответствует углу атаки.

Дело в том, что «прилипаемость» потока к обтекаемой поверхности ограничена, и если мы попытаемся слишком сильно искривить поток воздуха, то он начнет «отрываться» от поверхности крыла. Образующаяся за крылом область низкого давления начинает «засасывать» не поток воздуха, идущий с ведущей кромки крыла, а воздух из области оставшейся за крылом, и подъемная сила генерируемая верхней частью крыла полностью или частично (в зависимости от того, где произошел отрыв) исчезнет, а лобовое сопротивление увеличится.

Для обычного самолета сваливание - это крайне неприятная ситуация. Подъемная сила крыла уменьшается с уменьшением скорости самолета или уменьшением плотности воздуха, а кроме того поворот самолета требует большей подъемной силы, чем просто горизонтальный полет. В нормальном полете все эти факторы компенсируют именно выбором угла атаки. Чем медленнее летит самолет, чем менее плотный воздух (самолет забрался на большую высоту или садится в жаркую погоду) и чем круче поворот, тем больше приходится делать этот угол. И если неосторожный пилот переходит определенную черту, то подъемная сила упирается в «потолок» и становится недостаточной для удержания самолета в воздухе. Добавляет проблем и увеличившееся сопротивление воздуха, которое ведет к потере скорости и дальнейшему снижению подъемной силы. А в результате самолет начинает падать - «сваливается». Попутно могут возникнуть проблемы с управлением из-за того, что подъемная сила перераспределяется по крылу и начинает пытаться «повернуть» самолет или управляющие поверхности оказываются в области сорванного потока и перестают генерировать достаточное управляющее усилие. А в крутом повороте, к примеру, поток может сорвать лишь с одного крыла, в результате чего самолет начнет не просто терять высоту, но и вращаться - войдет в штопор. Сочетание этих факторов остается одной из нередких причин авиакатастроф. С другой стороны, некоторые современные боевые самолеты специально проектируются таким специальным образом, чтобы сохранять управляемость в подобных закритических режимах атаки. Это позволяет подобным истребителям при необходимости резко тормозить в воздухе. Иногда это используется для торможения в прямолинейном полете, но чаще востребовано в виражах, поскольку чем меньше скорость, тем меньше при прочих равных радиус поворота самолета. И да-да, Вы угадали - именно это та самая «сверхманевренность», которой заслуженно гордятся специалисты проектировавшие аэродинамику отечественных истребителей 4 и 5 поколений.

Однако мы пока так и не ответили на основной вопрос: откуда, собственно, возникают области повышенного и пониженного давления вокруг крыла в набегающем потоке воздуха? Ведь оба явления («прилипание потока к крылу» и «над крылом воздух движется быстрее»), которыми можно объяснить полет, являются следствием определенного распределения давлений вокруг крыла, а не его причиной. Но почему формируется именно такая картина давлений, а не какая-то другая?

К сожалению, ответ на этот вопрос уже неизбежно требует привлечения математики. Давайте представим себе, что наше крыло является бесконечно длинным и одинаковым по всей длине, так что движение воздуха вокруг него можно моделировать в двумерном срезе. И давайте предположим, для начала, что в роли нашего крыла выступает… бесконечно длинный цилиндр в потоке идеальной жидкости. В силу бесконечности цилиндра такую задачу можно свести к рассмотрению обтекания круга в плоскости потоком идеальной жидкости. Для столь тривиального и идеализированного случая существует точное аналитическое решение, предсказывающее, что при неподвижном цилиндре общее воздействие жидкости на цилиндр будет нулевым.

А теперь давайте рассмотрим некое хитрое преобразование плоскости на себя, которое математики называют конформным отображением. Оказывается можно подобрать такое преобразование, которое с одной стороны сохраняет уравнения движения потока жидкости, а с другой трансформирует круг в фигуру, имеющую похожий на крыло профиль. Тогда трансформированные тем же самым преобразованием линии тока жидкости для цилиндра становятся решением для тока жидкости вокруг нашего импровизированного крыла.

Наш исходный круг в потоке идеальной жидкости имеет две точки, в которых линии тока соприкасаются с поверхностью круга, и следовательно те же две точки будут существовать и на поверхности профиля после применения к цилиндру преобразования. И в зависимости от поворота потока относительно исходного цилиндра («угла атаки») они будут располагаться в разных местах поверхности сформированного «крыла». И почти всегда это будет означать, что часть линий тока жидкости вокруг профиля должна будет огибать заднюю, острую кромку крыла, как показано на картинке выше.

Это потенциально возможно для идеальной жидкости. Но не для реальной.

Наличие в реальной жидкости или газе даже небольшого трения (вязкости) приводит к тому, что поток подобный изображенному на картинке немедленно нарушается - верхний поток будет сдвигать точку где линия тока соприкасается с поверхностью крыла до тех, пор пока она не окажется строго на задней кромке крыла (постулат Жуковского-Чаплыгина, он же аэродинамическое условие Кутты). И если преобразовать «крыло» обратно в «цилиндр», то сдвинувшиеся линии тока окажутся примерно такими:

Но если вязкость жидкости (или газа) очень мала, то получившееся подобным путем решение должно подходить и для цилиндра. И оказывается, что такое решение действительно можно найти, если предположить, что цилиндр вращается . То есть физические ограничения, связанные с перетоком жидкости вокруг задней кромки крыла приводят, к тому, что движение жидкости из всех возможных решений будет стремиться прийти к одному конкретному решению, в котором часть потока жидкости вращается вокруг эквивалентного цилиндра, отрываясь от него в строго определенной точке. А поскольку вращающийся цилиндр в потоке жидкости создает подъемную силу, то ее создает и соответствующее крыло. Компонент движения потока соответствующий этой «скорости вращения цилиндра» называется циркуляцией потока вокруг крыла, а теорема Жуковского говорит о том, что аналогичную характеристику можно обобщить для произвольного крыла, и позволяет количественно рассчитывать подъемную силу крыла на ее основе. В рамках этой теории подъемная сила крыла обеспечивается за счет циркуляции воздуха вокруг крыла, которая порождается и поддерживается у движущегося крыла указанными выше силами трения, исключающими переток воздуха вокруг его острой задней кромки.

Удивительный результат, не правда ли?

Описанная теория конечно сильно идеализирована (бесконечно длинное однородное крыло, идеальный однородный несжимаемый поток газа / жидкости без трения вокруг крыла), но дает довольно точное приближение для реальных крыльев и обычного воздуха. Только не воспринимайте в ее рамках циркуляцию как свидетельство того, что воздух действительно вращается вокруг крыла. Циркуляция - это просто число, показывающее, насколько должен отличаться по скорости поток на верхней и нижней кромках крыла, чтобы решение движений потока жидкости обеспечило отрыв линий тока строго на задней кромке крыла. Не стоит также воспринимать «принцип острой задней кромки крыла» как необходимое условие для возникновения подъемной силы: последовательность рассуждений вместо этого звучит как «если у крыла острая задняя кромка, то подъемная сила формируется так-то».

Попробуем подытожить. Взаимодействие воздуха с крылом формирует вокруг крыла области высокого и низкого давления, которые искривляют воздушный поток так, что он огибает крыло. Острая задняя кромка крыла приводит к тому, что в идеальном потоке из всех потенциальных решений уравнений движения реализуется только одно конкретное, исключающее переток воздуха вокруг острой задней кромки. Это решение зависит от угла атаки и у обычного крыла имеет область пониженного давления над крылом и область повышенного давления - под ним. Соответствующая разница давлений формирует подъемную силу крыла, заставляет воздух двигаться быстрее над верхней кромкой крыла и замедляет воздух под нижней. Количественно подъемную силу удобно описывать численно через эту разницу скоростей над крылом и под ним в виде характеристики, которая называется «циркуляцией» потока. При этом в соответствии с третьим законом Ньютона действующая на крыло подъемная сила означает, что крыло отклоняет вниз часть набегающего воздушного потока - для того, чтобы самолет мог лететь, часть окружающего его воздуха должна непрерывно двигаться вниз. Опираясь на этот движущийся вниз поток воздуха самолет и «летит».

Простое же объяснение с «воздухом, которому нужно пройти более длинный путь над крылом, чем под ним» - неверно.

Человечество издавна интересовал вопрос, как же так получается, что многотонный летательный аппарат легко поднимается к небесам. Как же происходит взлет и как летают самолеты? Когда авиалайнер движется на большой скорости по взлетной полосе, у крыльев появляется подъемная сила и работает снизу вверх.

При движении воздушного судна вырабатывается разница давлений на нижнюю и верхнюю стороны крыла, благодаря чему получается подъемная сила, удерживающая воздушное судно в воздухе. Т.е. высокое давление воздуха снизу толкает крыло вверх, при этом низкое давление сверху затягивает крыло на себя. В результате крыло поднимается.

Для взлета авиалайнера, ему необходим достаточный разбег. Подъемная сила крыльев увеличивается в процессе набора скорости , которая должна превысить предельный взлетный режим. Затем пилот увеличивает угол взлета , отводя штурвал к себе. Носовая часть лайнера поднимается вверх, и машина поднимается в воздух.

Затем убираются шасси и выпускные фары . С целью уменьшения подъемной силы крыла, пилот постепенно выполняет уборку механизации. Когда авиалайнер достигнет необходимого уровня, летчик устанавливает стандартное давление, а двигателям – номинальный режим . Чтобы посмотреть, как взлетает самолет, видео предлагаем просмотреть в конце статьи.

Взлет судна выполняется под углом . С практической точки зрения этому можно дать следующее объяснение. Руль высоты – это подвижная поверхность, управляя которой можно вызвать отклонение самолета по тангажу.

Рулем высоты можно управлять углом тангажа, т.е. изменять скорость набора или потери высоты. Это происходит вследствие изменения угла атаки и силы подъема. Увеличивая скорость двигателя, пропеллер начинает крутиться быстрее и поднимает авиалайнер вверх. И наоборот, направляя рули высоты вниз, нос самолета опускается вниз, при этом скорость двигателя следует уменьшать.

Хвостовая часть авиалайнера укомплектована рулем направления и тормозами на обе стороны колес.

Как летают авиалайнеры

Отвечая на вопрос, почему летают самолеты, следует вспомнить закон физики. Разница давлений воздействует на подъемную силу крыла.

Скорость потока будет больше, если давление воздуха будет низким и с точностью, наоборот.

Поэтому, если скорость авиалайнера большая, то его крылья приобретают подъемную силу, которая толкает воздушное судно.

Еще на подъемную силу крыла авиалайнера влияют некоторые обстоятельства: угол атаки, скорость и плотность потока воздуха, площадь, профиль и форма крыла.

Современные лайнеры имеют минимальную скорость от 180 до 250 км/час , при которых осуществляется взлет, планирует в небесах и не падает.

Высота полета

Какая же предельная и безопасная высота полета самолета.

Не все суда имеют одинаковую высоту полета , «воздушный потолок» может колебаться на высоте от 5000 до 12100 метров . На больших высотах плотность воздуха минимальная, при этом лайнер достигает наименьшего сопротивления воздуха.

Двигателю лайнера необходим фиксированный объем воздуха для сжигания, потому как двигатель не создаст нужной тяги. Также, при полетах на большой высоте, самолет экономит топливо до 80% в отличие от высоты до километра.

За счет чего самолет находится в воздухе

Чтобы ответить, почему самолеты летают, необходимо поочередно разобрать принципы его перемещения в воздухе. Реактивный авиалайнер с пассажирами на борту достигает несколько тонн, но при этом, легко взлетает и осуществляет тысячекилометровый перелет.

На движение в воздухе влияют и динамические свойства аппарата, конструкции агрегатов, формирующие полетную конфигурацию.

Силы, влияющие на движение самолета в воздухе

Работа авиалайнера начинается с запуска двигателя. Небольшие суда работают на поршневых двигателях, вращающих воздушные винты, при этом создается тяга, помогающая воздушному судну перемещаться в воздушном пространстве.

Большие авиалайнеры работают на реактивных двигателях, которые в процессе работы выбрасывают много воздуха, при этом реактивная сила приводит летательный аппарат к движению вперед.

Почему же самолет взлетает и находится долгое время в воздухе? Так как форма крыльев имеет разную конфигурацию: сверху округлая, а снизу плоская , то поток воздуха с обеих сторон не одинаковый. Сверху крыльев воздух скользит и становится разреженным, а давление его меньше, чем воздух снизу крыла. Потому, посредством неравномерного давления воздуха и форме крыльев, возникает сила, приводящая к взлету самолета вверх.

Но чтобы авиалайнер мог легко оторваться от земли, ему необходимо на высокой скорости совершить разбег по взлетной полосе.

Из этого следует вывод, чтобы авиалайнер беспрепятственно находился в полете, ему необходим движущийся воздух, который рассекают крылья и создает подъемную силу.

Взлет самолета и его скорость

Многих пассажиров интересует вопрос, какую скорость развивает самолет при взлете? Существует ошибочное представление, что скорость взлета для каждого самолета одинакова. Чтобы ответить на вопрос, какая скорость самолета при взлете, следует обратить внимание на немаловажные факторы.

  1. Авиалайнер не имеет строго фиксированной скорости. Подъемная сила воздушного лайнера зависит от его массы и длины крыльев . Взлет совершается тогда, когда при встречном потоке создается подъемная сила, которая на много больше массы самолета. Поэтому, взлет и скорость воздушного аппарата зависит от направления ветра, атмосферного давления, влажности, осадков, длины и состояния взлетной полосы.
  2. Чтобы создать подъемную силу и удачно выполнить отрыв от земли, самолету необходимо набрать максимальную взлетную скорость и достаточный разбег . Для этого требуются длинные взлетные полосы. Чем большегрузный самолет, тем требуются длиннее взлетно-посадочная полоса.
  3. Для каждого самолета существует своя шкала взлетных скоростей, потому что все они имеют свое предназначение: пассажирский, спортивный, грузовой. Чем легче самолет, тем взлетная скорость значительно ниже и наоборот.

Взлет пассажирского реактивного самолета Boeing 737

  • Разбег авиалайнера по взлетной полосе начинается, когда двигатель достигнет 800 оборотов в минуту, пилот потихоньку отпускает тормоза и держит рычаг управления на нейтральном уровне. Затем самолет продолжает движение на трех колесах;
  • Перед отрывом от земли скорость лайнера должна достигнуть 180 км в час . Затем летчик тянет рычаг, что приводит к отклонению щитков – закрылков и поднятию носовой части самолета. Далее разгон производится на двух колесах;
  • После, с приподнятой носовой частью, авиалайнер разгоняется на двух колесах до 220 км в час , а затем производится отрыв от земли.

Поэтому, если вы хотите подробнее узнать, как взлетает самолет, на какую высоту и с какой скоростью, мы предлагаем вам эту информацию в нашей статье. Надеемся, что от воздушного путешествия вы получите огромное удовольствие.

Высота полета – один из важнейших авиационных параметров. От нее зависят, в частности, скорость и расход топлива. Иногда от выбора высоты зависит и безопасность полета. Так, например, пилотам приходится менять высоту при резком изменении метеоусловий, из-за густого тумана, плотной облачности, обширного грозового фронта или турбулентной зоны.

Какой должна быть высота полета

В отличие от скорости самолета (когда чем быстрее, тем лучше), высота полета должна быть оптимальной. Причем у каждого типа самолетов она своя. Никому в голову не придет сравнивать высоты, на которых летают, к примеру, спортивные, пассажирские или многоцелевые боевые самолеты. И все же и здесь есть свои рекордсмены.


Первый рекорд высоты полета равнялся… трем метрам. Именно на такую высоту впервые поднялся самолет Wright Flyer братьев Уилбура и Орвилла Райт 17 декабря 1903 года. Спустя 74 года, 31 августа 1977 года советский летчик-испытатель Александр Федотов на истребителе МиГ-25 установил мировой рекорд высоты — 37650 метров. До настоящего времени она остается максимальной высотой полета истребителя.

На какой высоте летают пассажирские самолеты

Самолеты гражданских воздушных линий по праву составляют самую большую группу современной авиации. По данным на 2015 год в мире насчитывалось 21,6 тыс. многоместных летающих аппаратов, из которых треть – 7,4 тыс. – это крупные широкофюзеляжные пассажирские лайнеры.

При определении оптимальной высоты полета (эшелона) диспетчер или командир экипажа руководствуются следующим. Как известно, чем больше высота, тем более разряжен воздух и тем легче лететь самолету – поэтому есть смысл подняться выше. Однако крыльям самолета нужна опора, а на предельно большой высоте (например, в стратосфере) ее явно недостаточно, и машина начнет «заваливаться», а двигатели глохнуть.


Вывод напрашивается сам собой: командир (а сегодня и бортовой компьютер) выбирает «золотую середину» – идеальное соотношение силы трения и подъемной силы. В результате, у каждого типа пассажирских лайнеров (с учетом метеоусловий, технических характеристик, продолжительности и направления полета) своя оптимальная высота.

Почему самолеты летают на высоте 10000 метров?

В целом, высота полета гражданских самолетов варьируется в пределах от 10 до 12 тыс. метров при полете на запад и от 9 до 11 тыс. метров – на восток. 12 тыс. метров – это максимальная высота для пассажирских самолетов, выше которой двигатели начинают «задыхаться» от нехватки кислорода. Из-за этого высота 10000 метров считается наиболее оптимальной.


На какой высоте летают истребители

Высотные критерии истребителей несколько иные, что объясняется их предназначением: в зависимости от поставленной задачи вести боевые действия приходится на различных высотах. Техническая оснащенность современных истребителей позволяет им действовать в диапазоне от нескольких десятков метров до десятков километров.

Однако запредельные высоты у истребителей нынче «не в моде». И этому есть свое объяснение. Современные средства ПВО и ракеты истребителей класса «воздух-воздух» способны уничтожать цели на любых высотах. Поэтому главная проблема для истребителя – раньше обнаружить и уничтожить противника, а самому остаться незамеченным. Оптимальная высота полета истребителя 5-го поколения (практический потолок) – 20000 метров.

Довольно странно наблюдать, как многотонная машина легко поднимается со взлетной полосы аэродрома и плавно набирает высоту. Казалось бы, поднять столь тяжелую конструкцию в воздух задача невыполнимая. Но, как видим, это не так. Почему самолет не падает, и за счет чего летит?

Ответ на этот вопрос лежит в тех физических законах, которые позволяют поднять в воздух летательные аппараты. Они верны не только в отношении планеров и легких спортивных самолетов, но и в отношении многотонных транспортных лайнеров, которые способны нести дополнительную полезную нагрузку. И вообще уж фантастическим, кажется полет вертолета, которые может не только двигаться по прямой линии, но и зависать на одном месте.

Полет летательных аппаратов стал возможен, благодаря совокупному использованию двух сил – подъемной, и силы тяги двигателей. И если с силой тяги все более или менее понятно, то с подъемной силой все обстоит несколько сложнее. Несмотря на то, что с этим выражением мы все хорошо знакомы, объяснить его может не каждый.

И так, какова природа появления подъемной силы?

Давайте внимательно посмотрим на крыло самолета, благодаря которому он и может держаться в воздухе. Снизу оно совершенно плоское, а сверху имеет сферическую форму, с выпуклостью наружу. Во время движения самолета воздушные потоки спокойно проходят под нижней частью крыла, не претерпевая каких — либо изменений. Но чтобы пройти над верхней поверхностью крыльев, воздушный поток должен сжаться. В результате мы получаем эффект продавленной трубы, сквозь которую должен пройти воздух.

Чтобы обогнуть сферическую поверхность крыла, воздуху понадобится больше времени, нежели при его прохождении под нижней, плоской поверхностью. По этой причине над крылом он движется быстрее, что, в свою очередь, приводит к возникновению разности давлений. Под крылом оно значительно больше, нежели над крылом, из-за чего и возникает подъемная сила. В данном случае действует закон Бернулли, с которым каждый из нас знаком со школьной скамьи. Самое главное в том, что разность давлений будет тем больше, чем выше скорость движения объекта. Вот и получается, что подъемная сила может возникать лишь при движении самолета. Она давит на крыло, заставляя его подниматься.

По мере разгона самолета по взлетной полосе, увеличивается и разность давлений, что приводит к возникновению подъемной силы. С набором скорости она постепенно растет, сравнивается с массой самолета, и как ее превысит, он взлетает. После набора высоты, пилоты уменьшают скорость, подъемная сила сравнивается с весом самолета, что заставляет его лететь в горизонтальной плоскости.

Чтобы самолет двигался вперед, его оснащают мощными двигателями, которые гонят воздушный поток в направлении крыльев. С их помощью можно регулировать интенсивность воздушного потока, а, следовательно, и силу тяги.