Open
Close

В каких случаях необходимо защитное заземление электроустановок. Отличия зануления от заземления, их схемы и область применения

Любая электроустановка должна быть заземлена. Это требование Правил устройства электроустановок (ПУЭ) одинаково распространяется на электроприборы с металлическим и пластиковым корпусом, устройства подключения и коммутации: распределительные и вводные щитки, розетки, выключатели.

Для чего необходимо заземление

Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.

Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы. То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током. Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза - «земля» - нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба - это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза - коричневого или белого цвета.
  2. Рабочий ноль - синего цвета.
  3. Защитное заземление - желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже - с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме - техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант - организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное - свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

Видео по теме

Введение

Защитное заземление, (зануление), является основной мерой защиты металлоконструкции. Основная цель этого мероприятия - защитить от возможного удара током пользователя прибора при замыкании на корпус в том случае, например поражения электрическим током в случае замыкания фазного провода на, когда нарушена изоляция. Иными словами, заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током. Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с "землей", а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередач. Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 ом. С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией.


Заземление - преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды - используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ

Терминология

· Глухозаземлённая нейтраль - нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока.

· Изолированная нейтраль - нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Обозначения

Обозначение на схемах (два символа справа)

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

· T - непосредственное соединения нейтрали источника питания с землёй;

· I - все токоведущие части изолированы от земли.

Вторая буква определяет состояние открытых проводящих частей относительно земли:

· T - открытые проводящие части заземлены, независимо от характера связи источника питания с землёй;

· N - непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи - функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

· S - функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

· C - функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:

· Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

· Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения - УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды - время срабатывания УЗО).

Разновидности систем заземления

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. ProtectionEarth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, данная система все еще встречается в постройках стран бывшего СССР.

Система TN-S


Разделение нулей в TN-S и TN-C-S

На замену условно опасной системы TN-C в 1930-х годах была разработана система TN-S (фр.Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция - электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи - отдельный нулевой защитный проводник (PE).

Система TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

Система IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения.

Зануление - это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью.

Принцип действия

Принцип действия зануления

Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с.

Обязательным условием безопасного функционирования электроприборов и различного оборудования является качественное заземление и зануление. Такая работа выполняется самостоятельно, что позволяет избежать выхода из строя техники из-за ее перенапряжения и коротких замыканий в сети. Заземление и зануление электроустановок выполняется с учетом особенностей оборудования, что предупредит его преждевременный выход из строя.

Определение понятий

Под заземлением принято понимать использование специальных конструкций, которые соединяют электропроводку дома или отдельные приборы с землёй. Благодаря наличию такой защиты прикосновение к поверхностям, которые находятся под напряжением, не приведет к летальному исходу , а удар тока будет минимальным. Изготавливается защита с электрооборудованием, имеющим изолированную нейтраль. Заземляющие устройства могут выполняться целой группой проводников, соединяющих с землей токопроводящие элементы.

Заземление электрооборудования также увеличивает аварийные токи замыкания, что необходимо в тех случаях, когда имеющаяся защита срабатывает при попадании под напряжение нетоковедущих частей. Это позволяет предупредить выход оборудования из строя при замыканиях, неквалифицированном ремонте и вмешательстве в электросети. Сегодня принято выделять несколько разновидностей заземления:

  • рабочий тип обеспечивает бесперебойную работу электрооборудования в штатном и аварийном режиме;
  • защитный тип обеспечивает безопасность электроустановок, предупреждая пробой на корпус и рабочую поверхность токоведущих проводов;
  • грозозащитный тип отводит молнию от зданий, уводя разряд в землю, предупреждает повреждение электрооборудования и возгорание строений.

Принято также различать искусственно изготовленное и естественное заземление. Первое выполняется для защиты сооружений и электроприборов от повышенного напряжения. Такие устройства состоят из металлического стержня, провода, труб некондиционного типа и стальных уголковых приспособлений. Естественное заземление также изготовлено человеком, однако изначально оно не предназначается для защиты от повышенного напряжения. В качестве него можно рассматривать железобетонные сооружения, трубопроводы, обсадные трубы и т. д.

Зануление также обеспечивает необходимую защиту электрооборудования, предупреждая его выход из строя из-за замыканий и перенапряжения в сети. Такой вид работ отличается от заземления принципом монтажа и назначением. Зануление подразумевает подключение токопроводящих элементов к корпусу электроприбора или металлическим деталям. Для обеспечения безопасности обязательно соединение с нейтралью, которая является источником трехфазного пониженного напряжения.

Основной задачей зануления является защита электрооборудования и рабочего персонала от поражения током за счёт срабатывания автоматического коммутационного оборудования. Принцип работы такой защиты заключается в создании искусственных коротких замыканий при попадании тока на корпус техники или в случаях пробоя изоляции. Возникновение короткого замыкания приводит к срабатыванию:

Заземление отличается от зануления применением специального оборудования, которое использует нейтраль и за счёт коротких замыканий разрывает цепь, предупреждая серьёзное поражение электрическим током. Особенностью зануления является необходимость высокой мощности тока нулевого провода, за счёт которого происходит короткое замыкание. Только в этом случае можно обеспечить стопроцентную вероятность защиты от поражения электричеством при наличии проблем в электроснабжении. Если мощности нулевого провода и токов короткого замыкания недостаточно, это приводит к появлению повышенного напряжения в электрооборудовании.

Выбор технологии

Планируя электрозащиту дома, многие из нас задумываются о выполнении дополнительной защиты электроснабжения. Однако домовладельцы не всегда понимают, в чем разница заземления и зануления. Основными различиями являются:

  • при заземлении избыточный ток отводится в землю, а при выполнении зануления напряжение сбрасывается в щитке на ноль;
  • заземление считается наиболее эффективным способом защиты человека от поражения электротоком.

Сделать заземление проще, чем зануление. В последнем случае потребуется помощь специалиста, который должен рассчитать оптимальные показатели нулевого тока и лишь после этого можно будет обеспечить правильность работы защитного оборудования.

К выполнению заземления чаще всего прибегают владельцы частных домов, а вот обладателям квартир в многоэтажках требуется делать зануление, для чего дополнительно устанавливают УЗО и аналогичные устройства, предупреждающие поражение током и повреждение работающих электроприборов. При правильном устройстве защиты можно полностью исключить опасность поражения электротоком, а различная техника и приборы будут полностью защищены от вероятных скачков напряжения и замыканий в сети.

Для обеспечения качественной защиты при занулении необходимо учитывать фазность приборов и выполнять сложные расчёты. Самостоятельно провести такую работу не представляется возможным. Только опытный электрик правильно спланирует подключение, установит соответствующие защитные приборы и проведет качественное зануление.

Выполненное заземление не будет зависеть от разности приборов, поэтому его проще обустроить самостоятельно, даже не имея каких-либо профессиональных навыков. Сбросить лишнее напряжение в землю намного безопаснее, чем монтировать дополнительные приспособления, которые отводят ток на щиток.

Сегодня в продаже имеются уже готовые комплекты для заземления частного дома. Потребуется только заглубить на несколько метров в землю металлический контур, подключить к нему фазу со щитка, что и позволит обеспечить максимальную безопасность используемых электроприборов. Можно подобрать различные комплекты, которые подходят для дачи или полноразмерного частного дома, отличаются своей конструкцией, способом подключения и максимально возможной нагрузкой.

В последние годы отмечается тенденция, когда полноценное зануление выполняется на производстве и предприятиях, где требуется обеспечить повышенную электробезопасность эксплуатируемым приборам и промышленному оборудованию. Обычные же домовладельцы в целях защиты от поражения током обустраивают простейшее заземление, сделать самостоятельно которое не составит особого труда.

Разновидности защитных систем

Основные требования к заземлению и занулению описаны в ГОСТе, что упрощает выполнение такой работы и стандартизирует используемые устройства. Защитные системы отличаются способом обустройства, принципом работы и используемым дополнительным оборудованием.

Система TN-C была разработана в Германии еще в начале прошлого века. Такая защита предусматривает использование единого кабеля с PE проводником и нулевым проводом. Недостатком этой системы заземления является появление избыточного напряжения при нарушении корпуса оборудования и отгорания нуля. Несмотря на имеющиеся недостатки, TN-C пользуется сегодня популярностью благодаря простоте в реализации.

Системы заземления TN-S и TN-C-S используют два провода, которые отходят от щитка и идут в землю. Контур выполняется в виде сложной металлической конструкции, что полностью исключает вероятность поражения током и выход из строя электроприборов при наличии проблем с электроснабжением. Эта схема получилась чрезвычайно удачной, она пользуется популярностью и обустраивается на дачах и в частных домах.

Заземление по типу TT основывается на соединении контура электроустановки с металлическими элементами, находящимися под землёй. Такая схема не получила сегодня должного распространения из-за сложности в реализации, а также возможных перепадов напряжения в сети.

Разновидность защиты OT подразумевает передачу лишнего напряжения на корпус и в землю с нейтрали, которая изолирована от грунта и подключена к приборам с большим сопротивлением. Такая схема получила распространение при использовании электрического оборудования, которому требуются стабильность и повышенная безопасность.

Популярные способы зануления

Зануление PNG отличается простотой конструкции , что объясняется совмещением защитных и нулевых проводников. К недостаткам этой системы безопасности относятся повышенные требования к взаимодействию проводникового сечения ее потенциалов. PNG широко используется при необходимости зануления асинхронных агрегатов, работающих в трехфазных сетях.

Наибольшую популярность сегодня получили модифицированные системы зануления электроустановок, которые питаются от однофазной сети. В них используется общий совмещенный PEN проводник, соединяющийся с глухозаземленной нейтралью. После такого соединения происходит разделение кабелей PE и N, которые далее подключаются к корпусу или аналогичным приборам защиты. Преимуществом такой технологии зануления является ее универсальность, возможность использования в однофазной и трехфазной сети, а также простота конструкции и полная безопасность.

Заземление и зануление электроустановок позволяет защитить технику от скачков напряжения и коротких замыканий. Зануление подразумевает использование специального оборудования, позволяющего перенаправить лишнее напряжение на щиток. Такая защита используется преимущественно на промышленных предприятиях и объектах, где требуется повышенная безопасность работы оборудования. Владельцы частных домов могут самостоятельно выполнить заземление, что позволит им защитить себя и используемые электроприборы от замыканий и перепадов в сети.

Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением при замыкании на корпус и по другим причинам.

Задача защитного заземления - устранение опасности поражения то­ком в случае прикосновения к корпусу и другим токоведущим металличес­ким частям электроустановки, оказавшимся под напряжением. Защитное заземление применяют в трехфазных сетях с изолированной нейтралью.

Принцип действия защитного заземления - снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасно­го значения.

Если корпус электрооборудования не заземлен и оказался в контакте с фазой, то прикосновение к такому корпусу равносильно прикоснове­нию к фазе. В этом случае ток, проходящий через человека (при малом сопротивлении обуви, пола и изоляции проводов относительно земли), может достигать опасных значений.

Если же корпус заземлен, то величина тока, проходящего через чело­века, безопасна для него. В этом назначение заземления, и поэтому оно называется защитным.

Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на кор­пус и по другим причинам.

Задача зануления - устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим час­тям электроустановки, оказавшимся под напряжением вследствие замы­кания на корпус. Решается эта задача быстрым отключением поврежден­ной электроустановки от сети.

При занулении, если оно надежно выполнено, всякое замыкание на корпус превращается в однофазное короткое замыкание (т.е. замыкание между фазами и нулевым проводом). При этом возникает ток такой силы, при которой обеспечивается срабатывание защиты (предохранителя или автомата) и автоматическое отключение поврежденной установки от сети.

Вместе с тем зануление (как и заземление) не защищает человека от поражения электрическим током при прямом прикосновении к токоведу-щим частям. Поэтому возникает необходимость (в помещениях, особо опас­ных в отношении поражения электрическим током) в использовании, по­мимо зануления, и других защитных мер, в частности, защитного отклю­чения и выравнивания потенциала.

Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы. Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом. И, несмотря на это, любому завсегдатаю технических форумов давно известно - нет более скандального вопроса, чем заземление.

Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.

Основные понятия

Если опустить вступление "библии электрика" (), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется "Заземление и защитные меры электробезопастности".

В п. 1.7.2. ПУЭ сказано:

Электроустановки в отношении мер электробезопасности разделяются на:

  • электроустановки выше 1 кВ (с большими токами замыкания на землю), ;
  • электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
  • электроустановки до 1 кВ с глухозаземленной нейтралью;
  • электроустановки до 1 кВ с изолированной нейтралью.

В подавляющем большинстве жилых и офисных домов России используется глухозаземленная нейтраль . Пункт 1.7.4. гласит:

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Термин не совсем понятный на первый взгляд - нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.

Введем немного терминов - так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться "вытащенными из контекста". Но не художественная литература, и такое раздельное использование должно быть вполне обоснованно - как применение отдельных статей УК. Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети - всегда можно обратиться к первоисточнику.

  • 1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
  • 1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения .
  • 1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
  • 1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
  • 1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
  • 1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
  • 1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
  • 1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока. Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

Рис. 1. Отличие защитного заземления и защитного "нуля"

Итак, прямо из терминов ПУЭ следует простой вывод. Различия между "землей" и "нулем" очень небольшие... На первый взгляд (сколько копий сломано на этом месте). По крайней мере, они обязательно должны быть соединены (или даже могут быть выполнены "в одном флаконе"). Вопрос только, где и как это сделано.

Попутно отметим п. 1.7.33.

Заземление или зануление электроустановок следует выполнять:

  • при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех электроустановках (см. также 1.7.44 и 1.7.48);
  • при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока - только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Иначе говоря, заземлять или занулять устройство, подключенное к напряжению 220 вольт переменного тока совсем не обязательно. И в этом нет ничего особо удивительного - третьего провода в обычных советских розетках реально не наблюдается. Можно сказать, что вступающий на практике в свои права Евростандарт (или близкая к нему новая редакция ПУЭ) лучше, надежнее, и безопаснее. Но по старому ПУЭ у нас в стране жили десятки лет... И что особенно важно, дома строили целыми городами.

Однако, когда речь идет о заземлении, дело не только в напряжении питания. Хорошая иллюстрация этого - ВСН 59-88 (Госкомархитектуры) "Электрооборудование жилых и общественных зданий. Нормы проектирования" Выдержка из главы 15. Заземление (зануление) и защитные меры безопасности:

15.4. Для заземления (зануления) металлических корпусов бытовых кондиционеров воздуха, стационарных и переносных бытовых приборов класса I (не имеющих двойной или усиленной изоляции), бытовых электроприборов мощностью св. 1,3 кВт, корпусов трехфазных и однофазных электроплит, варочных котлов и другого теплового оборудования, а также металлических нетоковедущих частей технологического оборудования помещений с мокрыми процессами следует применять отдельный проводник сечением, равным фазному, прокладываемый от щита или щитка, к которому подключен данный электроприемник, а в линиях питающих медицинскую аппаратуру, - от ВРУ или ГРЩ здания. Этот проводник присоединяется к нулевому проводнику питающей сети. Использование для этой цели рабочего нулевого проводника запрещается.

Получается нормативный парадокс. Одним из видимых на бытовом уровне результатов стало комплектование стиральных машин "Вятка-автомат" моточком одножильного алюминиевого провода с требованием выполнить заземление (руками сертифицированного специалиста).

И еще один интересный момент:. 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Практически это означает - хочешь "заземлить" - сначала "занули". Кстати, это имеет прямое отношение к знаменитому вопросу "забатареивания" - которое по совршенно непонятной причине ошибочно считается лучше зануления (заземления).

Параметры заземления

Следующий аспект, которые необходимо рассмотреть - числовые параметры заземления. Так как физически это не более чем проводник (или множество проводников), то главной его характеристикой будет сопротивление.

1.7.62. Сопротивление заземляющего устройства, к к оторому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более: 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Для меньшего напряжения допустимо большее сопротивление. Это вполне понятно - первая цель заземления - обеспечить безопасность человека в классическом случае попадания "фазы" на корпус электроустановки. Чем меньше сопротивление, тем меньшая часть потенциала может оказаться "на корпусе" в случае аварии. Следовательно, в первую очередь нужно снижать опасность для более высокого напряжения.

Дополнительно нужно учитывать, что заземление служит и для нормальной работы предохранителей. Для этого необходимо, что бы линия при пробое "на корпус" существенно изменяла свойства (прежде всего сопротивление), иначе срабатывания не произойдет. Чем больше мощность электроустановки (и потребляемое напряжение), тем ниже ее рабочее сопротивление, и соответственно должно быть ниже сопротивление заземления (иначе при аварии предохранители не сработают от незначительного изменения суммарного сопротивления цепи).

Следующий нормируемый параметр - сечение проводников.

1.7.76. Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104) .

Приводить всю таблицу не целесообразно, достаточно выдержки:

Для неизолированных медных минимальное сечение составляет 4 кв. мм, для алюминиевых - 6 кв. мм. Для изолированных, соответственно, 1,5 кв. мм и 2,5 кв. мм. Если заземляющие проводники идут в одном кабеле с силовой проводкой, их сеч ение может составлять 1 кв. мм для меди, и 2,5 кв. мм для алюминия.

Заземление в жилом доме

В обычной "бытовой" ситуации пользователи электросети (т.е. жильцы) имеют дело только с Групповой сетью (7.1.12 ПУЭ. Групповая сеть - сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников ). Хотя в старых домах, где щитки установлены прямо в квартирах, им приходится сталкиваться с частью Распределительной сети (7.1.11 ПУЭ. Распределительная сеть - сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков ). Это желательно хорошо понимать, ведь часто "ноль" и "земля" отличаются только местом соединения с основными коммуникациями.

Из этого в ПУЭ сформулировано первое правило заземления:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего ос вещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный - L, нулевой рабочий - N и нулевой защитный - РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Т.е. от этажного, квартирного или группового щитка нужно прокладывать 3 (три) провода, один из которых защитный нуль (совсем не земля). Что, впрочем, вовсе не мешает использовать ее для заземления компьютера, экрана кабеля, или "хвостика" грозозащиты. Вроде бы все просто, и не совсем понятно, зачем углубляться в такие сложности.

Можно посмотреть на свою домашнюю розетку... И с вероятностью около 80% не увидеть там третьего контакта. Чем отличается нулевой рабочий и нулевой защитный проводники? В щитке они соединяются на одной шине (пусть не в одной точке). Что будет, если использовать в данной ситуации рабочий ноль в качестве защитного?

Предполагать, что нерадивый электрик перепу тает в щитке фазу и ноль, сложно. Хоть этим постоянно пугают пользователей, но ошибиться невозможно в любом состоянии (хотя бывают уникальные случаи). Однако "рабочий ноль" идет по многочисленным штробам, вероятно проходит через несколько распределительных коробочек (обычно небольшие, круглые, смонтированы в стене недалеко от потолка).

Перепутать фазу с нулем там уже намного проще (сам это делал не раз). А в результате на корпусе неправильно "заземленого" устройства окажется 220 вольт. Или еще проще - отгорит где-то в цепи контакт - и почти те же 220 пройдут на корпус через нагрузку электропотребителя (если это электроплита на 2-3 кВт, то мало не покажется).

Для функции защиты человека - прямо скажем, никуда не годная ситуация. Но для подключения заземления грозозащиты типа APC не фатальная, так как там установлена высоковольтная развязка. Впрочем, рекомендовать такой способ было бы однозначно неправильно с точки зрения безопасности. Хотя надо признать, что нарушается эта норма очень часто (и как правило без каких-либо неблагоприятных последствий).

Надо отметить, что грозозащитные возможности рабочего и защитного нуля примерно равны. Сопротивление (до соединительной шины) от личается незначительно, а это, пожалуй, главный фактор, влияющий на стекание атмосферных наводок.

Из дальнейшего текста ПУЭ можно заметить, что к нулевому защитному проводнику нужно присоединять буквально все, что есть в доме:

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

Вообще, это проще представить следующей иллюстрацией:


Рис. 2. Схема заземления

Картина довольна необычная (для бытового восприят ия). Буквально все, что есть в доме, должно быть заземлено на специальную шину. Поэтому может возникнуть вопрос - ведь жили без этого десятки лет, и все живы-здоровы (и слава Богу)? Зачем все так серьезно менять? Ответ простой - потребителей электричества становится больше, и они все мощнее. Соответственно, риски поражения вырастают.

Но зависимость безопасности и стоимости величина статистическая, и экономию никто не отменял. Поэтому слепо класть по периметру квартиры медную полосу приличного сечения (вместо плинтуса), заводя на нее все, вплоть до металлических ножек стула, не стоит. Как не стоит ходить в шубе летом, и постоянно носить мотоциклетный шлем. Это уже вопрос адекватности.

Так же в область ненаучного подхода стоит отнести самостоятельное рытье траншей под защитный контур (в городском доме кроме проблем это заведомо ничего не принесет). А для желающих все же испытать все прелести жизни - в первой главе ПУЭ есть нормативы на изготовление этого фундаментального сооружения (в совершено прямом смысле этого слова).

Подводя итоги вышесказанному, можно сделать следующие практические выводы:

  • Если Групповая сеть выполнена тремя проводами, для заземления/зануления можно использовать защитный ноль. Он, собственно, для того и придуман.
  • Если Групповая сеть выполнена двумя проводами, желательно завести защитный нулевой провод от ближайшего щитка. Сечение провода должно быть более, чем фазного (точнее можно справиться в ПУЭ).