Open
Close

Абиотические факторы среды. Характеристика абиотических факторов и их классификация

Выделяют следующие группы абиотических факторов (факторов неживой природы): климатические, эдафогенные (почвенные), орографические и химические.

I) Климатические факторы: к ним относятся солнечное излучение, температура, давление, ветер и некоторые другие воздействия среды.

1) Солнечное излучение является мощным экологическим фактором. Оно распространяется в пространстве в виде электромагнитных волн, из которых 48% приходится на видимую часть спектра, 45% − на инфракрасное излучение (с большой длиной волны) и около 7% − на коротковолновое ультрафиолетовое излучение. Солнечное излучение представляет собой первичный источник энергии, без которого невозможна жизнь на Земле. Но, с другой стороны, прямое воздействие солнечного света (особенно его ультрафиолетовой составляющей) губительно для живой клетки. Эволюция биосферы была направлена на снижение интенсивности ультрафиолетовой части спектра и защиты от избыточной солнечной радиации. Этому способствовало образование озона (озонового слоя) из кислорода, выделенного первыми организмами-фотосинтетиками.

Общее количество солнечной энергии, достигающей Земли, примерно постоянно. Но разные точки земной поверхности получают разное количество энергии (из-за различия во времени освещенности, разного угла падения, степени отражения, прозрачности атмосферы и т.д.)

Выявлена тесная связь между солнечной активностью и ритмом биологических процессов. Чем больше солнечная активность (больше пятен на Солнце), тем больше возмущений в атмосфере, магнитных бурь, воздействующих на живые организмы. Большую роль играет также смена солнечной активности в течение суток, обуславливающая суточные ритмы организма. У человека более 100 физиологических характеристик подчиняется суточному циклу (выделение гормонов, частота дыхания, работа различных желез и т.д.)

Солнечное излучение в большой степени определяет остальные климатические факторы.

2) Температура окружающей среды связана с интенсивностью солнечного излучения, особенно инфракрасной части спектра. Жизнедеятельность большинства организмов протекает нормально в интервале температур от +5 до 40 0 С. Выше +50 0 − +60 0 начинается необратимое разрушение белка, входящего в состав живых тканей. При высоких давлениях верхний предел температур может быть гораздо выше (до +150−200 0 С). Нижний предел температуры часто оказывается менее критическим. Некоторые живые организмы способны выдерживать очень низкие температуры (до −200 0 С) в состоянии анабиоза. Многие организмы Арктики и Антарктики постоянно живут при отрицательных температурах. У некоторых арктических рыб нормальная температура тела составляет −1,7 0 С. При этом вода в их узких капиллярах не замерзает.

Зависимость интенсивности жизнедеятельности большинства живых организмов от температуры имеет следующий вид:


Рис.12. Зависимость жизнедеятельности организмов от температуры

Как видно из рис., при повышении температуры происходит ускорение биологических процессов (скорости размножения и развития, количества потребляемой пищи). Например, развитие гусениц бабочки-капустницы при +10 0 С требует 100 суток, а при +26 0 С − всего 10 суток. Но дальнейшее увеличение температуры ведет к резкому снижению параметров жизнедеятельности и гибели организма.

В воде диапазон колебаний температур меньше, чем на суше. Поэтому водные организмы меньше приспособлены к изменениям температуры, чем наземные.

Температура часто обуславливает зональность в наземных и водных биогеоценозах.

3) Влажность окружающей среды − важный экологический фактор. Большинство живых организмов на 70−80% состоят из воды − вещества, необходимого для существования протоплазмы. Влажность местности определяется влажностью атмосферного воздуха, количеством осадков, площадью водных запасов.

Влажность воздуха зависит от температуры: чем она выше, тем обычно больше водяных содержится в воздухе. Наиболее богаты влагой нижние слои атмосферы. Осадки представляют собой результат конденсации водяных паров. В зоне умеренного климата распределение осадков по времени года более-менее равномерное, в тропиках и субтропиках − неравномерное. Доступный запас поверхностных вод зависит от подземных источников и количества осадков.

Взаимодействие температуры и влажности формирует два климата: морской и континентальный.

4) Давление − еще один климатический фактор, важный для всех живых организмов. На Земле есть области с постоянно высоким или низким давлением. Перепады давления связаны с неодинаковым нагревом земной поверхности.

5) Ветер − направленное движение воздушных масс, являющееся следствием перепада давлений. Ветровой поток направлен из зоны с большим давлением в зону с меньшим давлением. Он влияет на температурный режим, влажность и перемещение примесей в воздухе.

6) Лунные ритмы обуславливают приливы и отливы, к которым приспособлены морские животные. Они используют приливы и отливы для многих жизненных процессов: перемещения, размножения, и т.д.

II) Эдафогенные факторы определяют различные характеристики почвы. Почва играет важную роль в наземных экосистемах − роль накопителя и резерва ресурсов. На состав и свойства почв сильно влияют климат, растительность и микроорганизмы. Степные почвы более плодородны, чем лесные, так как травы недолговечны и ежегодно в почву поступает большое количество органического вещества, которое быстро разлагается. Экосистемы, не имеющие почв, обычно очень неустойчивы. Выделяют следующие основные характеристики почв: механический состав, влагоемкость, плотность и воздухопроницаемость.

Механический состав почв определяется содержанием в ней частиц различной величины. Различают четыре типа почв, в зависимости от их механического состава: песок, супесь, суглинок, глина. Механический состав прямо воздействует на растения, на подземных организмов, а через них − на другие организмы. От механического состава зависят влагоемкость (способность удерживать влагу), их плотность и воздухопроницаемость почв.

III) Орографические факторы. К ним относятся высота местности над уровнем моря, ее рельеф и расположение относительно сторон света. Орографические факторы во многом определяют климат данной местности, а также другие биотические и абиотические факторы.

IV) Химические факторы. К ним относится химический состав атмосферы (газовый состав воздуха), литосферы, гидросферы. Для живых организмов большое значение имеет содержание в окружающей среде макро- и микроэлементов.

Макроэлементы − элементы, требующиеся организму в сравнительно больших количествах. Для большинства живых организмов это фосфор, азот, калий, кальций, сера, магний.

Микроэлементы − элементы, требующиеся организму в крайне малых количествах, но входящие в состав жизненно важных ферментов. Микроэлементы необходимы для нормальной жизнедеятельности организма. Наиболее распространенные микроэлементы − металлы, кремний, бор, хлор.

Между макроэлементами и микроэлементами нет четкой границы: то, что для одних организмов − микроэлемент, для другого − макроэлемент.

Введение

Абиотические факторы среды -- это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Естественно, что эти факторы действуют одновременно и значит, что все живые организмы попадают под их влияние. Степень присутствия или отсутствия каждого из них существенно отражается на жизнеспособности организмов, причем на разные их виды неодинаково. Надо отметить, что это очень сильно влияет на всю экосистему в целом, на ее устойчивость.

Факторы среды как по отдельности, так и в комплексе при воздействии на живые организмы заставляют их изменяться, адаптироваться к этим факторам. Эта способность носит название экологической валентности или пластичности. Пластичность, или экологическая валентность, каждого вида различна и по-разному сказывается на способности живых организмов выживать в условиях меняющихся факторов среды. Если к биотическим факторам организмы не только приспосабливаются, но и могут на них воздействовать, изменяя другие живые организмы, то с абиотическими факторами среды это невозможно: организм может к ним приспособиться, но не в состоянии оказать на них сколько-нибудь значимое обратное влияние.

Абиотическими факторами среды называются условия, напрямую не связанные с жизнедеятельностью организмов. К числу наиболее важных абиотических факторов можно отнести температуру, свет, воду, состав атмосферных газов, структуру почвы, состав биогенных элементов в ней, рельеф местности и т.п. Эти факторы могут воздействовать на организмы как непосредственно, например свет или тепло, так и косвенно, например рельеф местности, обусловливающий действие прямых факторов, света, ветра, влаги и пр. Совсем недавно было открыто влияние изменений солнечной активности на биосферные процессы.

Основные абиотические факторы и их характеристика

Среди абиотических факторов выделяют:

1. Климатические (влияние температуры, света и влажности);

2. Геологические (землетрясение, извержение вулканов, движение ледников, сход селей и лавин и др.);

3. Орографические (особенности рельефа местности, где обитают изучаемые организмы).

Рассмотрим действие основных прямодействующих абиотических факторов: света, температуры и наличия воды. Температура, свет и влажность являются наиболее важными факторами внешней среды. Эти факторы закономерно изменяются как в течение года и суток, так и в связи с географической зональностью. К этим факторам организмы обнаруживают зональный и сезонный характер приспособления.

Свет как экологический фактор

Солнечное излучение является основным источником энергии для всех процессов, происходящих на Земле. В спектре солнечного излучения можно выделить три области, различные по биологическому действию: ультрафиолетовую, видимую и инфракрасную. Ультрафиолетовые лучи с длиной волны менее 0,290 мкм губительны для всего живого, но они задерживаются озоновым слоем атмосферы. До поверхности Земли доходит лишь небольшая часть более длинных ультрафиолетовых лучей (0,300 - 0,400 мкм). Они составляют около 10% лучистой энергии. Эти лучи обладают высокой химической активностью - при большой дозе могут повреждать живые организмы. В небольших количествах, однако, они необходимы, например, человеку: под влиянием этих лучей в организме человека образуется витамин Д, а насекомые зрительно различают эти лучи, т.е. видят в ультрафиолетовом свете. Они могут ориентироваться по поляризованному свету.

Видимые лучи с длиной волны от 0,400 до 0,750 мкм (на их долю приходится большая часть энергии - 45% - солнечного излучения), достигающие поверхности Земли, имеют особенно большое значение для организмов. Зеленые растения за счет этого излучения синтезируют органическое вещество (осуществляют фотосинтез), которое используют в пищу все остальные организмы. Для большинства растений и животных видимый свет является одним из важных факторов среды, хотя есть и такие, для которых свет не является обязательным условием существования (почвенные, пещерные и глубоководные виды приспособления к жизни в темноте). Большинство животных способны различать спектральный состав света - обладать цветовым зрением, а у растений цветки имеют яркую окраску для привлечения насекомых-опылителей.

Инфракрасные лучи с длиной волны более 0,750 мкм глаз человека не воспринимает, но они являются источником тепловой энергии (45% лучистой энергии). Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие хладнокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела (некоторые змеи и ящерицы являются экологически теплокровными животными). Световые условия, связанные с вращением Земли, имеют отчетливую суточную и сезонную периодичность. Почти все физиологические процессы у растений и животных имеют суточный ритм с максимумом и минимумом в определенные часы: например, в определенные часы суток цветок у растений открывается и закрывается, а у животных возникли приспособления к ночной и дневной жизни. Длина дня (или фотопериод), имеет огромное значение в жизни растений и животных.

Растения, в зависимости от условий обитания, адаптируются к тени - теневыносливые растения или, напротив, к солнцу - светолюбивые растения (к примеру, хлебные злаки). Однако сильное яркое солнце (яркость выше оптимальной) подавляет фотосинтез, поэтому в тропиках трудно получить высокий урожай культур, богатый белком. В умеренных зонах (выше и ниже экватора) цикл развития растений и животных приурочен к сезонам года: подготовка к изменению температурных условий осуществляется на основе сигнала - изменения длины дня, которая в определенное время года в данном месте всегда одинакова. В результате этого сигнала включаются физиологические процессы, приводящие к росту, цветению растений весной, плодоношения летом и сбрасывания листьев осенью; у животных - к линьке, накоплению жира, миграции, размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых. Изменение длины дня животные воспринимают с помощью органов зрения. А растения - с помощью специальных пигментов, расположенных в листьях растений. Раздражения воспринимаются с помощью рецепторов, вследствие чего происходит ряд биохимических реакций (активация ферментов или выделение гормонов), а затем проявляются физиологические или поведенческие реакции.

Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана не просто на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности. Организмы способны измерять время, т.е. обладают “биологическими часами” - от одноклеточных до человека. “Биологические часы” - также управляются сезонными циклами и другими биологическими явлениями. “Биологические часы” определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, в частности клеточных делений.

Температура как экологический фактор

Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов - редко выше 40-45 о С. Некоторые цианобактерии и бактерии обитают при температурах 70-90 о С, в горячих источниках могут жить и некоторые моллюски (до 53 о С). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 о С). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 o С.

Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных - внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 o С, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры - так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.

У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 o С и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 o С, необходимая для развития личинок).

Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).

Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих - гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 o С, а у млекопитающих - несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.

Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных - потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц - только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.

Вода как экологический фактор

Вода играет исключительную роль в жизни любого организма, поскольку она является структурным компонентом клетки (на долю воды приходится 60-80% массы клетки). Значение воды в жизни клетки определяется ее физико-химическими свойствами. Вследствие полярности молекула воды способна притягиваться к любым другим молекулам, образуя гидраты, т.е. является растворителем. Многие химические реакции могут протекать происходить только в присутствии воды. Вода является в живых системах “тепловым буфером”, поглощая тепло при переходе из жидкого состояния в газообразное, тем самым предохраняя неустойчивые структуры клетки от повреждения при кратковременном освобождении тепловой энергии. В связи с этим она производит охлаждающий эффект при испарении с поверхности и регулирует температуру тела. Теплопроводные свойства воды определяют ее ведущую роль терморегулятора климата в природе. Вода медленно нагревается и медленно охлаждается: летом и днем вода морей океанов и озер нагревается, а ночью и зимой также медленно охлаждается. Между водой и воздухом происходит постоянный обмен углекислым газом. Кроме того, вода выполняет транспортную функцию, перемещая вещества почвы сверху вниз и обратно. Роль влажности для наземных организмов обусловлена тем, что осадки распределяются на земной поверхности в течение года неравномерно. В засушливых районах (степи, пустыни) растения добывают себе воду с помощью сильно развитой корневой системы, иногда очень длинных корней (у верблюжьей колючки - до 16 м), достигающих влажного слоя. Высокое осмотическое давление клеточного сока (до 60-80 атм), увеличивающее сосущую силу корней, способствует удержанию воды в тканях. В сухую погоду растения снижают испарение воды: у пустынных растений утолщаются покровные ткани листа, либо на поверхности листьев развивается восковой слой или густое опушение. Ряд растений достигает снижения влаги уменьшением листовой пластинки (листья превращаются в колючки, часто растения полностью теряют листья - саксаул, тамариск и др.).

В зависимости от требований, предъявляемых к водному режиму, среди растений различают следующие экологические группы:

Гидратофиты - растения постоянно живущие в воде;

Гидрофиты - растения лишь частично погружаемые в воду;

Гелофиты - болотные растения;

Гигрофиты - наземные растения, обитающие в чрезмерно увлажненных местах;

Мезофиты - предпочитают умеренное увлажнение;

Ксерофиты - растения, приспособленные к постоянном недостатку влаги; среди ксерофитов различают:

Суккуленты - накапливающие воду в тканях своего тела (сочные);

Склерофиты - теряющие значительное количество воды.

Многие животные пустынь способны обходиться без питьевой воды; некоторые быстро и долго могут бегать, совершая длинные миграции на водопой (сайгаки, антилопы, верблюды и др.); часть животных добывает воду из пищи (насекомые, пресмыкающиеся, грызуны). Жировые отложения пустынных животных могут служить своеобразным резервом воды в организме: при окислении жиров образуется вода (отложения жира в горбе верблюдов или подкожные отложения жира у грызунов). Малопроницаемые покровы кожи (например, у пресмыкающихся) защищают животных от потери влаги. Многие животные перешли к ночному образу жизни или скрываются в норах, избегая иссушающего действия низкой влажности и перегрева. В условиях периодической сухости ряд растений и животных переходят в состояние физиологического покоя - растения приостанавливают рост и сбрасывают листья, животные впадают в спячку. Эти процессы сопровождаются пониженным обменом веществ в период сухости.

абиотический природа биосферный солнечный

Литература

1. http://burenina.narod.ru/3-2.htm

2. http://ru-ecology.info/term/76524/

4. http://www.ecology-education.ru/index.php?action=full&id=257

5. http://bibliofond.ru/view.aspx?id=484744

Все живое на Земле связано со средой обитания, которая включает разнообразные географические области и населяющие их сообщества живых организмов. По характеру действия связи организма со средой могут быть абиотическими (сюда относятся факторы неживой природы - физические и химические условия среды) и биотическими (факторы живой природы - межвидовые и внутривидовые взаимоотношения).

Жизнедеятельность организмов невозможна без постоянного притока энергии извне. Ее источником является Солнце. Вращение Земли вокруг своей оси приводит к неравномерному распределению энергии Солнца, его теплового излучения. В связи с этим атмосфера над сушей и океаном нагревается неодинаково, а различия в температуре местности и давлении вызывают перемещения воздушных масс, изменение влажности воздуха, что влияет на ход химических реакций, физических превращений и прямо или косвенно - на все биологические явления (характер расселения жизни, биоритмы и т. п.). Регулирующее влияние на плотность жизни оказывает комплекс факторов: свет, температура, вода, минеральные питательные вещества и др. Эволюция жизни осуществлялась в направлении эффективного приспособления к этим факторам: "колебаниям влажности, освещения, температуры, ветра, силы тяжести и др. Взаимосвязи организмов между собой и со средой обитания изучает наука экологи я. Рассмотрим значение, отдельных экологических факторов.

Свет - основной источник энергии на Земле. Природа света двойственна: с одной стороны он представляет собой поток элементарных физических частиц - корпускул, или фотонов, не имеющих заряда, с другой - обладает волновыми свойствами. Чем меньше длина волны фотона, тем выше его энергия, и наоборот. Энергия фотонов служит источником обеспечения энергетических потребностей растений при фотосинтезе, поэтому зеленое растение не может существовать без света.

Свет (освещенность) представляет собой мощный стимул активности организмов - фотопериодизма в жизни растений (рост, цветение, опадание листвы) и животных (линька, накопление жира, миграции и размножение птиц и млекопитающих, наступление стадии покоя - диапаузы, поведенческие реакции и др.). Продолжительность светового дня зависит от географической широты. С этим связано существование растений длинного дня, цветение которых наступает при продолжительности светлого периода суток 12 ч и более (картофель, рожь, овес, пшеница и др.), и растений короткого дня с фотопериодом 12 ч и менее (большинство тропических цветковых растений, соя, просо, конопля, кукуруза и многие другие растения умеренной зоны). Но есть растения, цветение которых не зависит от длины дня (томаты, одуванчик и др.). Ритмы освещенности вызывают у животных различную активность в дневное и ночное время суток или в сумерки, а также сезонные явления: весной - подготовку к размножению, осенью - к зимней спячке, линьку.

Коротковолновая радиация Солнца (290 нм) представляет собой ультрафиолетовые лучи (УФ). Большая часть их поглощается слоем озона в верхних участках атмосферы; на Землю проникают УФ-лучи с меньшей энергией (300-400 нм), которые губительны для многих микроорганизмов и их спор; в организме человека и животных эти лучи активируют синтез витамина Д из холестерина и образование пигментов кожи и глаза. Средневолновая радиация (600-700 нм) представляет собой оранжевую часть спектра и поглощается растением при фотосинтезе.

Как проявление приспособительных реакций на смену дня и ночи у животных и человека наблюдается суточная ритмичность интенсивности обмена веществ, частоты дыхания, сердечных сокращений и уровня кровяного давления, температуры тела, клеточных делений и т.д. У человека выявлено более ста физиологических процессов биоритмологического характера, благодаря которым у здоровых людей наблюдается согласованность различных функций. Исследование биоритмов имеет большое значение для разработки мер, облегчающих адаптацию человека к новым условиям при дальних перелетах, переселении людей в районы Сибири, Дальнего Востока, Севера, Антарктиды.

Считают, что нарушение регуляторных механизмов по поддержанию внутренней среды организма (гомеостаза) - последствие урбанизации и индустриализации: чем дольше организм изолирован от внешних климатических факторов и находится в комфортных условиях микроклимата помещения, тем заметнее снижаются его приспособительные реакции к перемене погодных факторов, нарушается способность к терморегуляции, чаще возникают расстройства сердечно-сосудистой деятельности.

Биологический эффект фотонов состоит в том, что их энергия в организме животных вызывает возбужденное состояние электронов в молекулах пигментов (порфиринов, каротиноидов, флавинов), которые возникший избыток своей энергии передают другим молекулам, и таким путем запускается цепь химических превращений. Белки и нуклеиновые кислоты поглощают УФ-лучи с длиной волны 250-320 нм, что может вызвать генетический эффект (генные мутации); лучи меньшей длины волны (200 нм и меньше) не только возбуждают молекулы, но и могут их разрушить.

В последние годы большое внимание уделяется изучению процесса фотореактивации - способности клеток Микроорганизмов ослаблять и полностью устранять повреждающий эффект УФ-облучения ДНК, если облученные клетки выращивать затем не в темноте, а на видимом свету. Фотореактивация - явление универсальное, осуществляется при участии специфических клеточиых ферментов, действие которых активируется квантами света определенной длины волны.

Температура оказывает регулирующее влияние на многие процессы жизни растений и животных, изменяя интенсивность обмена веществ. Активность клеточных ферментов лежит в пределах от 10 до 40 °С, при низких температурах реакции идут замедленно, но при достижении оптимальной температуры активность ферментов восстанавливается. Пределы выносливости организмов в отношении температурного фактора для большинства видов не превышают 40-45 °С, пониженные температуры оказывают менее неблагоприятное воздействие на организм, чем высокие. Жизнедеятельность организма осуществляется в пределах от -4 до 45 °С. Однако небольшая группа низших организмов способна обитать в горячих источниках при температуре 85 °С (серные бактерии, синезеленые водоросли, некоторые круглые черви), многие низшие организмы легко выдерживают очень низкие температуры (их устойчивость к замерзанию объясняется высокой концентрацией солей и органических веществ в цитоплазме).

У каждого вида животных, растений и микроорганизмов выработались необходимые приспособления как к высоким, так и к низким температурам. Так, многие насекомые при наступлении холодов скрываются в почве, под корой деревьев, в трещинах скал, лягушки зарываются в ил на дне водоемов, некоторые наземные животные впадают в спячку и оцепенение. Приспособление от перегрева в жаркое время года у растений выражается в увеличении испарения воды через устьица, у животных - в виде испарения воды через дыхательную систему и кожные покровы. Животные, не обладающие системой активной терморегуляции (холоднокровные, или пойкилотермные), колебания внешней температуры переносят плохо, поэтому их ареалы на суше относительно ограничены (амфибии, рептилии). С наступлением холодов у них снижается обмен веществ, потребление пищи и кислорода, они погружаются в спячку или впадают в состояние анабиоза (резкое замедление жизненных процессов при сохранении способности к оживлению), а при благоприятных погодных условиях пробуждаются и снова начинают активную жизнь. Споры и семена растений, а среди животных - инфузории, коловратки, клопы, клещи и др. - могут много лет находиться в состоянии анабиоза. Теплокровность у млекопитающих и птиц дает им возможность переносить неблагоприятные условия в активном состоянии, пользуясь убежищами, поэтому они в меньшей степени зависят от окружающей среды. В период чрезмерного повышения температуры в условиях пустыни животные приспособились переносить жару путем погружения в летнюю спячку. Растения пустынь и полупустынь весной за очень короткий срок завершают вегетацию и после созревания семян сбрасывают листву, вступая в фазу покоя (тюльпаны, мятлик луковичный, иерихонская роза и др.).

Вода. Энергией Солнца вода поднимается с поверхности морей и океанов и возвращается на Землю в виде разнообразных осадков, оказывая разностороннее влияние на организмы. Вода - важнейший компонент клетки, на ее долю приходится 60-80% ее массы. Биологическое значение воды обусловлено ее физико-химическими свойствами. Молекула воды полярна, поэтому она способна притягиваться к различным другим молекулам и ослаблять интенсивность взаимодействия между зарядами этих молекул, образуя с ними гидраты, т. е. выступать в качестве растворителя. Многие, вещества вступают в разнообразные химические реакции только в присутствии воды.

Диэлектрические свойства, наличие связей между молекулами обусловливают большую теплоемкость воды, что создает в живых системах "тепловой буфер", предохраняя неустойчивые структуры клетки от повреждения при местном кратковременном освобождении тепловой энергии. Поглощая тепло при переходе из жидкого в газообразное состояние, вода производит охлаждающий; эффект испарения, используемый организмами для регуляции температуры тела. Благодаря большой теплоемкости вода играет роль основного терморегулятора климата. Ее медленное нагревание и охлаждение регулируют колебания температуры океанов и озер: летом и днем в них накапливается тепло, которое они отдают зимой и ночью. Стабилизации климата способствует также постоянный обмен диоксидом углерода между воздушной и водной оболочками земного шара и горными породами, а также растительным и животным миром. Вода выполняет транспортную роль в перемещении веществ почвы сверху вниз и в обратном направлении. В почве они служит средой обитания для одноклеточных организмов (амебы, жгутиковые, инфузории, водоросли).

В зависимости от режима влаги растения в местах и обычного произрастания подразделяются на гигрофиты-растения избыточного увлажненных мест, мезофиты-растения достаточно увлажненных мест и ксерофиты - растения сухих местообитаний. Есть еще группа водных цветковых растений - гидрофиты, которые обитают в водной среде (стрелолист, элодея, роголистник). Недостаток влаги служит ограничивающим фактором, определяющим границы жизни и ее зональное распределение. При недостатке воды у животных и растений вырабатываются приспособления к ее добыванию и сохранению. Одна из функций листопада - приспособление против избыточной потери воды. У растений засушливых мест листья мелкие, иногда в форме чешуек (в этом случае стебель принимает на себя функцию фотосинтеза); той же цели служит распределение устьиц на листе, которое может уменьшать испарение воды. Животные в условиях сильно пониженной влажности во избежание потери воды активны ночью, днем они скрываются в норах и даже впадают в оцепенение или спячку. Грызуны не пьют воду, а пополняют ее с растительной пищей. Своеобразным резервуаром воды для животных пустынь являются жировые отложения (горб у верблюда, подкожные отложения жира у грызунов, жировое тело у насекомых), из которых поступает вода, образующаяся в организме при окислительных реакциях в ходе расщепления жира. Таким образом, все факты приспособленности организмов к условиям жизни - яркая иллюстрация целесообразности в живой природе, возникшей под влиянием естественного отбора.

Ионизирующее излучение. Излучение с очень высокой энергией, которое способно приводить к образованию пар положительных и отрицательных ионов, называется ионизирующим. Его источником являются радиоактивные вещества, содер жащиеся в горных породах; кроме того, оно поступает из космоса. Из трех видов ионизирующего излучения, имеющих важ-ное экологическое значение, два представляют собой корпу-скулярное излучение (альфа- и бета-частицы), а третье- электромагнитное (гамма.-излучение и близкое ему рентге-новское излучение). Гамма-излучение легко проникает в живые ткани; это излучение может пройти сквозь организм, не оказав никакого воздействия, или же может вызвать ионизацию на большом отрезке своего пути.

В целом ионизирующее излучение оказывает на более высокоразвитые и сложные организмы наиболее, губительное действие; человек отличается особой чувствительностью.
Загрязняющие вещества. Эти вещества можно разделить на две группы: природные соединения, являющиеся отходами технологических процессов, и искусственные соединения, не встречающиеся в природе.

К 1-й группе относятся сернистый ангидрид, углекислый газ, оксиды азота, углерода, углеводороды, соединения меди, цинка и ртути и др., минеральные удобрения.

Во 2-ю группу входят искусственные вещества, обла-дающие специальными свойствами, удовлетворяющими по-требности человека:пестициды, используемые для борьбы с животными--вредителями сельскохозяйственных культур, антибиотики, применяемые в медицине и ветеринарии для лечения инфекционных заболеваний. К пестицидам относятся инсектициды - средства для борьбы с вредныминасекомыми и гербициды --. средства для борьбы с сорняками.

Все они обладают определенной токсичностью (ядовитостью) для человека.

К абиотическим факторам относятся также атмосферные газы, минеральные вещества, барометрическое давление, движение воздушных масс и гидросферы (течение), минеральная основа почвы, соленость воды и почвы.

Остановимся на значении минеральных элементов . Ряд неорганических веществ находится в организме в составе солей, а при диссоциации образуют ионы (катионы и анионы): Na+, Mg2+, РО43-, Сl-, К+, Са2+, СО32-, NO3-. Значение ионного состава в клетке выявляется на многих сторонах ее жизнедеятельности. Например, калий избирательно взаимодействует с сократительным белком мышц - миозином, снижая вязкость клеточного сока и вызывая расслабление мышц. Кальций усиливает вязкость цитоплазмы и стимулирует мышечное сокращение, снижает порог возбудимости нервов и освобождается из мембранной системы при мышечном сокращении. В больших дозах кальций потребляется моллюсками и позвоночными, которым он необходим для роста раковины и костей. Натрия много у животных преимущественно во внеклеточной жидкости, а калия - внутри клетки; их взаимоперемещение создает разность электрических потенциалов между жидкостями внутри и вне клеток, что лежит в основе передачи нервных импульсов.

Ионы магния оказывают влияние на агрегацию рибосом: при снижении их концентрации рибосома распадается на две части. Магний входит в состав молекулы хлорофилла и некоторых ферментов. Для осуществления фотосинтеза растениям необходимы Mn, Fe, Cl, Zn; для азотистого обмена - Мо, В, Со, Сu, Si. В состав молекулы гемоглобина входит железо, в состав гормона щитовидной железы - йод. Цинк участвует во многих реакциях гидролиза, разрывая связи между атомами углерода и кислорода. Отсутствие или недостатокNa+, Mg2+, К+, Са2+, ведет к потере возбудимости клетки и ее гибели.
В природных условиях недостаток тех или других микроэлементов приводит к развитию эндемичных (свойственных только определенной местности) заболеваний человека: эндемического зоба (недостаток йода в питьевой воде), флюороза и крапчатости зубов (избыточное поступление в организм фтора) и др. Недостаток меди в травах, произрастающих на болотистых и торфяных почвах, ведет к анемии у крупного рогатого скота, расстройству пищеварительной системы, поражению центральной нервной системы, изменению цвета шерсти и т. д.

Нежелателен также избыток микроэлементов. В частности, в некоторых местностях известен стронциевый рахит и хронический молибденовый токсикоз у животных понос у крупного рогатого скота, падение удоя, изменение цвета шерсти). Многие вопросы о роли микроэлементов в возникновении тех или иных физиологических нарушений изучены пока недостаточно.

К абиотическим факторам среды относят субстрат и его состав, влажность, температуру, свет и другие виды излучений в природе, и его состав, и микроклимат. Следует отметить, что температуру, состав воздуха, влажность и свет можно условно отнести к «индивидуальным», а субстрат, климат, микроклимат и др. - к «комплексным» факторам.

Субстрат (буквально) - это место прикрепления. Например, для древесных и травянистых форм растений, для почвенных микроорганизмов это почва. В ряде случаев субстрат можно считать синонимом среды обитания (например, почва - это эдафическая среда обитания). Субстрат характеризуется определенным химическим составом, который оказывает влияние на организмы. Если субстрат понимается как среда обитания, то он в этом случае представляет собой комплекс характерных для него биотических и абиотических факторов, к которым приспосабливается тот или иной организм.

Характеристика температуры как абиотического фактора среды

Роль температуры как экологического фактора сводится к тому, что она влияет на обмен веществ: при низких температурах скорость биоорганических реакций сильно замедляется, а при высоких - значительно увеличивается, что приводит к нарушению равновесия в протекании биохимических процессов, а это вызывает различные заболевания, а иногда и летальный исход.

Влияние температуры, на растительные организмы

Температура не только является фактором, определяющим возможность обитания растений на той или иной территории, но она для некоторых растений оказывает влияние на процесс их развития. Так, озимые сорта пшеницы и ржи, которые при прорастании не подверглись процессу «яровизации» (воздействию низких температур), не дают семян при их произрастании в самых благоприятных условиях.

Для перенесения воздействия низких температур растения имеют различные приспособления.

1. В зимний период цитоплазма теряет воду и накапливает вещества, обладающие эффектом «антифриза» (это моносахара, глицерин и другие вещества) - концентрированные растворы таких веществ замерзают только при низких температурах.

2. Переход растений в стадию (фазу), устойчивую к воздействию низких температур - стадия спор, семян, клубней, луковиц, корневищ, корнеплодов и т. д. Древесные и кустарниковые формы растений сбрасывают листья, стебли покрываются пробкой, обладающей высокими теплоизоляционными свойствами, а в живых клетках накапливаются вещества-антифризы.

Влияние температуры на животные организмы

Температура по-разному влияет на пойкилотермных и гомойотермных животных.

Пойкилотермные животные активны только в период оптимальных для их жизнедеятельности температур. В период низких температур они впадают в спячку (земноводные, пресмыкающиеся, членистоногие и др.). Некоторые насекомые перезимовывают или в виде яиц, или в виде куколок. Нахождение организма в спячке характеризуется состоянием анабиоза, при котором процессы обмена очень сильно заторможены и организм может длительное время обходиться без пищи. В спячку пойкилотермные животные могут впадать и под воздействием высоких температур. Так, животные в нижних широтах в жаркое время дня находятся в норах, а период их активной жизнедеятельности приходится на раннее утро или поздний вечер (либо они ведут ночной образ жизни).

В спячку животные организмы впадают не только за счет воздействия температуры, но и за счет других факторов. Так, медведь (гомойотермное животное) впадает в спячку зимой из-за недостатка пищи.

Гомойотермные животные в меньшей степени в своей жизнедеятельности зависят от температуры, но температура влияет на них с точки зрения наличия (отсутствия) кормовой базы. Эти животные имеют следующие приспособления к преодолению воздействия низких температур:

1) животные перемещаются из более холодных областей в более теплые (перелеты птиц, миграции млекопитающих);

2) изменяют характер покрова (летний мех или оперение заменяются на более густой зимний; накапливают большой слой жира - дикие свиньи, тюлени и др.);

3) впадают в спячку (например, медведь).

Гомойотермные животные имеют приспособления для снижения воздействия температур (как повышенных, так и пониженных). Так, у человека имеются потовые железы, которые изменяют характер секреции при повышенных температурах (количество секрета увеличивается), изменяется просвет кровеносных сосудов в коже (при низких температурах он уменьшается, а при высоких - увеличивается) и т. д.

Излучения как абиотический фактор

И в жизни растений, и в жизни животных огромную роль играют различные излучения, которые или попадают на планету извне (солнечные лучи), или выделяются из недр Земли. Здесь рассмотрим в основном солнечные излучения.

Солнечные излучения неоднородны и состоят из электромагнитных волн разной длины, а следовательно, обладают и различной энергией. Поверхности Земли достигают лучи как видимого, так и невидимого спектра. К лучам невидимого спектра относятся инфракрасные и ультрафиолетовые лучи, а лучи видимого спектра имеют семь наиболее различимых лучей (от красного до фиолетового). квантов излучений увеличивается от инфракрасного до ультрафиолетового (т. е. ультрафиолетовые лучи содержат кванты наиболее коротких волн и наибольшей энергии).

Солнечные лучи имеют несколько экологически важных функций:

1) благодаря солнечным лучам на поверхности Земли реализуется определенный температурный режим, имеющий широтный и вертикальный зональный характер;

При отсутствии воздействия человека состав воздуха, тем не менее, может различаться в зависимости от высоты над уровнем моря (с высотой содержание кислорода и углекислого газа уменьшается, так как эти газы тяжелее азота). Воздух приморских районов обогащен парами воды, в которых содержатся морские соли в растворенном состоянии. Воздух леса отличается от воздуха полей примесями соединений, выделяемых различными растениями (так, воздух соснового бора содержит большое количество смолистых веществ и эфиров, убивающих болезнетворные микроорганизмы, поэтому этот воздух является целебным для больных туберкулезом).

Важнейшим комплексным абиотическим фактором является климат.

Климат - это совокупный абиотический фактор, включающий в себя определенный состав и уровень солнечной радиации, связанный с ним уровень температурного и влажностного воздействия и определенный режим ветров. Климат зависит также от характера растительности, произрастающей на данной территории, и от рельефа местности.

На Земле наблюдается определенная широтная и вертикальная климатическая зональность. Различают влажный тропический, субтропический, резко континентальный и другие разновидности климата.

Повторите сведения о различных видах климата по учебнику физической географии. Рассмотрите особенности климата той территории, на которой вы живете.

Климат как совокупный фактор формирует тот или иной тип растительности (флоры) и тесно связанный с ним тип фауны. Большое влияние на климат оказывают поселения людей. Климат больших городов отличается от климата пригородных зон.

Сравните температурный режим города, в котором вы живете, и режим температур области, где находится город.

Как правило, температура в черте города (особенно в центре) всегда выше, чем в области.

С климатом тесно связан микроклимат. Причиной возникновения микроклимата являются различия в рельефе на данной территории, наличие водоемов, что приводит к изменению условий на разных территориях данной климатической зоны. Даже на относительно небольшой территории дачного участка на отдельных его частях могут возникать различные условия для произрастания растений из-за разных условий освещения.

Среды определяются климатическими условиями, а также почвенными и водными.

Классификация

Существует несколько классификаций абиотических факторов. Одна из самых популярных делит их на такие составляющие:

  • физические факторы барометрическое давление, влажность);
  • химические факторы (состав атмосферы, минеральные и органические вещества почвы, уровень рН в почве и другие)
  • механические факторы (ветер, оползни, движения воды и почвы, рельеф местности и др.)

Абиотические факторы окружающей среды существенным образом влияют на распространение видов и определяют их ареал, т.е. географическую зону, которая является местом обитания тех или иных организмов.

Температура

Особое значение отводится температуре, так как это важнейший показатель. В зависимости от температуры, абиотические факторы среды различаются термическими поясами, с которыми связана жизнь организмов в природе. Это — холодный, умеренный, тропический и Температура, которая благоприятна для жизнедеятельности организмов, называется оптимальной. Почти все организмы способны жить в диапазоне 0°- 50°С.

В зависимости от способности существовать в разных температурных условиях, их классифицируют как:

  • эвритермные организмы, приспособленные к условиям резких температурных колебаний;
  • стенотермные организмы, существующие в узком температурном диапазоне.

Эвритермными считают организмы, обитающие преимущественно там, где преобладает континентальный климат. Эти организмы способны выдерживать жесткие температурные колебания (личинки двукрылых, бактерии, водоросли, гельминты). Некоторые эвритермные организмы могут впадать в состояние спячки, если «ужесточается» температурный фактор. Обмен веществ в таком состоянии значительно снижается (барсуки, медведи и др.).

Стенотермные организмы могут быть как среди растений, так и животных. Например, большинство морских животных выживают при температуре до 30°С.

Животных разделяют по способности поддерживать собственную терморегуляцию, т.е. постоянную температуру тела, на так называемых пойкилотермных и гомойотермных. Первые могут менять свою температуру, тогда как у вторых, она всегда постоянная. Все млекопитающие и ряд птиц являются гомойотермными животными. К пойкилотермным относят все организмы, кроме некоторых видов птиц и млекопитающих. Температура тела у них близка к температуре окружающей среды. В ходе эволюция животные, относящиеся к гомойотермным, приспособились защищаться от холода (спячка, миграции, мех и другое).

Свет

Абиотические факторы среды - это свет и его интенсивность. Его важность особенно велика для фотосинтезирующих растений. На уровень фотосинтеза влияет интенсивность качественный состав света, распределение света во времени. Однако при этом известны бактерии и грибы, которые могут продолжительное время размножаться в полной темноте. Растения разделяют на светолюбивые, тепловыносливые и теплолюбивые.

Для многих животных важна продолжительность светового дня, которая влияет на половую функцию, увеличивая ее в период длинного светового дня и угнетая при коротком (осень или зима).

Влажность

Влажность является комплексным фактором и представляет собой количество водяных паров в воздушной среде и воды в почве. От уровня влажности зависит продолжительность жизни клеток, а, соответственно, и всего организма. На влажность почвы влияет количество осадков, глубина залегания воды в почве и другие условия. Влага необходима для растворения минеральных веществ.

Абиотические факторы водной среды

Химические факторы не уступают по своему значению физическим факторам. Большая роль принадлежит газовому а также составу водной среды. Почти все организмы нуждаются в кислороде, а ряд организмов — в азоте, сероводороде или метане.

Физические абиотические факторы среды представляет газовый состав, который чрезвычайно важен для тех живых существ, которые обитают в водной среде. В водах Черного моря, например, много сероводорода, из-за чего этот бассейн считается не очень благоприятным для многих организмов. Соленость - важная составляющая водной среды. Больше всего водных животных проживает в соленых водах, меньшее количество — в пресных водах, а еще меньшее — в немного солоноватой воде. На распространение и размножение водных животных влияет способность к поддержанию солевого состава внутренней среды.