Open
Close

Какие бывают и как образуются черные дыры. Черная дыра: что внутри? Интересные факты и исследования

January 24th, 2013

Из всех гипотетических объектов Вселенной, предсказываемых научными теориями, черные дыры производят самое жуткое впечатление. И, хотя предположения об их существовании начали высказываться почти за полтора столетия до публикации Эйнштейном общей теории относительности, убедительные свидетельства реальности их существования получены совсем недавно.

Давайте начнем с того, как общая теория относительности решает вопрос о природе гравитации. Закон всемирного тяготения Ньютона утверждает, что между двумя любыми массивными телами во Вселенной действует сила взаимного притяжения. По причине такого гравитационного притяжения Земля обращается вокруг Солнца. Общая теория относительности заставляет нас взглянуть на систему Солнце—Земля иначе. Согласно этой теории в присутствии столь массивного небесного тела, как Солнце, пространство-время как бы проминается под его тяжестью, и равномерность его ткани нарушается. Представьте себе эластичный батут, на котором лежит тяжелый шар (например, от боулинга). Натянутая ткань прогибается под его весом, создавая вокруг разрежение. Таким же образом Солнце продавливает пространство-время вокруг себя.



Согласно этой картине Земля просто катается вокруг образовавшейся воронки (за исключением того, что маленький шарик, катающийся вокруг тяжелого на батуте неизбежно будет терять скорость и по спирали приближаться к большому). И то, что мы привычно воспринимаем как силу земного притяжения в нашей повседневной жизни, также есть ни что иное, как изменение геометрии пространства-времени, а не сила в ньютоновском понимании. На сегодня более удачного объяснения природы гравитации, чем дает нам общая теория относительности, не придумано.

А теперь представьте, что произойдет, если мы будем — в рамках предложенной картины — увеличивать и увеличивать массу тяжелого шара, не увеличивая при этом его физических размеров? Будучи абсолютно эластичной, воронка будет углубляться до тех пор, пока ее верхние края не сойдутся где-то высоко над совсем потяжелевшим шаром, и тогда он просто перестанет существовать при взгляде с поверхности. В реальной Вселенной, накопив достаточную массу и плотность материи, объект захлопывает вокруг себя пространственно-временную ловушку, ткань пространства-времени смыкается, и он теряет связь с остальной Вселенной, становясь невидимым для нее. Так возникает черная дыра.

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5-3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.


09.07.1911 - 13.04.2008

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Важнейшее свойство черной дыры — что бы в нее ни попало, обратно оно не вернется. Это касается даже света, вот почему черные дыры и получили свое название: тело, поглощающее весь свет, падающий на него, и не испускающее собственного кажется абсолютно черным. Согласно общей теории относительности, если объект приближается к центру черной дыры на критическое расстояние — это расстояние называется радиусом Шварцшильда, — он уже никогда не сможет вернуться назад. (Немецкий астроном Карл Шварцшильд (Karl Schwarzschild, 1873-1916) в последние годы своей жизни, используя уравнения общей теории относительности Эйнштейна, рассчитал гравитационное поле вокруг массы нулевого объема.) Для массы Солнца радиус Шварцшильда составляет 3 км, то есть, чтобы превратить наше Солнце в черную дыру, нужно уплотнить всю его массу до размера небольшого городка!


Внутри радиуса Шварцшильда теория предсказывает явления еще более странные: всё вещество черной дыры собирается в бесконечно малую точку бесконечной плотности в самом ее центре — математики называют такой объект сингулярным возмущением. При бесконечной плотности любая конечная масса материи, математически говоря, занимает нулевой пространственный объем. Происходит ли это явление реально внутри черной дыры, мы, естественно, экспериментально проверить не можем, поскольку всё попавшее внутрь радиуса Шварцшильда обратно не возвращается.

Не имея, таким образом, возможности «рассмотреть» черную дыру в традиционном смысле слова «смотреть», мы, тем не менее, можем обнаружить ее присутствие по косвенным признакам влияния ее сверхмощного и совершенно необычного гравитационного поля на материю вокруг нее.

Сверхмассивные черные дыры

В центре нашего Млечного Пути и других галактик располагается невероятно массивная черная дыра в миллионы раз тяжелее Солнца. Эти сверхмассивные черные дыры (такое название они получили) были обнаружены по наблюдениям за характером движения межзвездного газа вблизи центров галактик. Газы, судя по наблюдениям, вращаются на близком удалении от сверхмассивного объекта, и простые расчеты с использованием законов механики Ньютона показывают, что объект, притягивающий их, при мизерном диаметре обладает чудовищной массой. Так закрутить межзвездный газ в центре галактики может только черная дыра. Фактически астрофизики нашли уже десятки таких массивных черных дыр в центрах соседних с нашей галактик, и сильно подозревают, что центр любой галактики — суть черная дыра.


Черные дыры со звездной массой

Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячих звезды, обращающихся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду. Астрономы сегодня имеют более десятка кандидатов на роль звездных систем такого рода, хотя строгих доказательств не получено в отношении ни одной из них.

В двойной системе с черной дырой в ее составе вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. И закручиваться высасываемое черной дырой вещество при падении в черную дыру будет по спирали, исчезая при пересечении радиуса Шварцшильда. При подходе к роковой границе, однако, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне спектра электромагнитного излучения. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел Чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.

Все другие типы черных дыр куда более спекулятивны и основаны исключительно на теоретических изысканиях — экспериментальных подтверждений их существования не имеется вовсе. Во-первых, это черные мини-дыры с массой, сопоставимой с массой горы и сжатой до радиуса протона. Идею об их зарождении на начальной стадии формирования Вселенной непосредственно после Большого взрыва высказал английский космолог Стивен Хокинг (см. Скрытый принцип необратимости времени). Хокинг предположил, что взрывами мини-дыр можно объяснить действительно загадочный феномен точеных вспышек гамма-излучения во Вселенной. Во-вторых, некоторые теории элементарных частиц предсказывают существование во Вселенной — на микро-уровне — настоящего решета из черных дыр, представляющих собой своего рода пену из отбросов мироздания. Диаметр таких микро-дыр предположительно составляет около 10-33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.


А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик - звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый — черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй — сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр — одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения — приблизительно 2000-20 000 электрон-вольт (для сравнения, энергия оптического излучения — около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000-300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» — первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это — серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.


источник

Чёрная дыра возникает в результате коллапса сверхмассивной звезды, в ядре которой заканчивается «топливо» для ядерной реакции. По мере сжатия температура ядра повышается, а фотоны с энергией более 511 кэВ, сталкиваясь, образуют электрон-позитронные пары, что приводит к катастрофическому снижению давления и дальнейшему коллапсу звезды под воздействием собственной гравитации.

Астрофизик Этан Сигел (Ethan Siegel) опубликовал статью «Крупнейшая чёрная дыра в известной Вселенной» , в которой собрал информацию о массе чёрных дыр в разных галактиках. Просто интересно: где же находится самая массивная из них?

Поскольку наиболее плотные скопления звёзд - в центре галактик, то сейчас практически у каждой галактики в центре находится массивная чёрная дыра, образованная после слияния множества других. Например, в центре Млечного пути есть чёрная дыра массой примерно 0,1% нашей галактики, то есть в 4 млн раз больше массы Солнца.

Определить наличие чёрной дыры очень легко, изучив траекторию движения звёзд, на которые воздействует гравитация невидимого тела.

Но Млечный путь - относительно маленькая галактика, которая никак не может иметь у себя самую большую чёрную дыру. Например, недалеко от нас в скоплении Девы находится гигантская галактика Messier 87 - она примерно в 200 раз больше нашей.

Так вот, из центра этой галактики вырывается поток материи длиной около 5000 световых лет (на фото). Это сумасшедшая аномалия, пишет Этан Сигел, но выглядит очень красиво.

Учёные считают, что объяснением такого «извержения» из центра галактики может быть только чёрная дыра. Расчёт показывает, что масса этой чёрной дыры где-то в 1500 раз больше, чем масса чёрной дыры в Млечном пути, то есть примерно 6,6 млрд масс Солнца.

Но где же во Вселенной самая большая чёрная дыра? Если исходить из расчёта, что в центре почти каждой галактики имеется такой объект с массой 0,1% от массы галактики, то нужно найти самую массивную галактику. Учёные могут дать ответ и на этот вопрос.

Самая массивная из известных нам - галактика IC 1101 в центре скопления Abell 2029, который находится от Млечного пути в 20 раз дальше, чем скопление Девы.

В IC 1101 расстояние от центра до самого дальнего края - около 2 млн световых лет. Её размер вдвое больше, чем расстояние от Млечного пути до ближайшей к нам галактики Андромеды. Масса почти равняется массе всего скопления Девы!

Если в центре IC 1101 есть чёрная дыра (а она должна там быть), то она может быть самой массивной в известной нам Вселенной.

Этан Сигел говорит, что может и ошибиться. Причина - в уникальной галактике NGC 1277. Это не слишком большая галактика, чуть меньше нашей. Но анализ её вращения показал невероятный результат: чёрная дыра в центре составляет 17 млрд солнечных масс, а это аж 17% общей массы галактики. Это рекорд по соотношению массы чёрной дыры к массе галактики.

Есть и ещё один кандидат на роль самой большой чёрной дыры в известной Вселенной. Он изображён на следующей фотографии.

Странный объект OJ 287 называется блазар . Блазары - особый класс внегалактических объектов, разновидность квазаров. Они отличаются очень мощным излучением, которое в OJ 287 меняется с циклом 11-12 лет (с двойным пиком).

По мнению астрофизиков, OJ 287 включает в себя сверхмассивную центральную чёрную дыру, по орбите которой вращается ещё одна чёрная дыра меньшего размера. Центральная чёрная дыра в 18 млрд масс Солнца - самая большая из известных на сегодняшний день.

Эта парочка чёрных дыр станет одним из самых лучших экспериментов для проверки общей теории относительности, а именно - деформации пространства-времени, описанной в ОТО.

Из-за релятивистских эффектов перигелий чёрной дыры, то есть ближайшая к центровой чёрной дыре точка орбиты, должен смещаться на 39° за один оборот! Для сравнения, перигелий Меркурия сместился всего на 43 арксекунды за столетие.

Черные дыры – это одни из самых могущественных и загадочных объектов во Вселенной. Они формируются после разрушения звезды.

Nasa составили ряд поразительных снимков предполагаемых черных дыр в просторах космоса.

Перед вами фото ближайшей галактики Центавр А, сделанный Chandra X-Ray Observatory. Здесь показано влияние сверхмассивной черной дыры в пределах галактики.

Недавно Nasa было объявлено, что в соседней галактике из взорвавшейся звезды зарождается черная дыра. По сообщению Discovery News эта дыра располагается в галактике M-100, находящейся на расстоянии в 50 миллионов лет от Земли.

Вот еще один очень интересный фотоснимок от Chandra Observatory, показывающий галактику M82. Nasa полагает, что изображенное может быть отправными точками для двух сверхмассивных черных дыр. Исследователи предполагают, что образование черных дыр начнется, когда звезды исчерпают свои ресурсы и сгорят. Они будут раздавлены собственным гравитационным весом.

Ученые связывают существование черных дыр с теорией относительности Эйнштейна. Специалисты используют Эйнштейновское понимание гравитации для определения громадной силы притяжения черной дыры. На представленной фотографии информация от Chandra X-Ray Observatory совпадает со снимками, полученными с космического телескопа Hubble. Nasa считает, что эти две черные дыры движутся по спирали навстречу друг другу на протяжении 30 лет, а со временем они могут стать одной большой черной дырой.

Это мощнейшая черная дыра в космической галактике M87. Субатомные частицы, движущиеся практически со скоростью света, указывают на то, что в центре этой галактики находится сверхмассивная черная дыра. Считают, что она «поглотила» материю, равную 2-м миллионам наших солнц.

Nasa полагает, что на этом снимке засвидетельствовано то, как две сверхмассивные черные дыры, столкнувшись между собой, формируют систему. Или же это так называемый «эффект рогатки», в результате чего система формируется из 3-х черных дыр. Когда звезды суперновые, они обладают способностью разрушаться и опять возникать, в результате чего формируются черные дыры.

Эта художественная визуализация показывает черную дыру, вытягивающую газ от соседней звезды. Черная дыра имеет такой цвет, так как ее гравитационное поле настолько плотное, что оно поглощает свет. Черные дыры невидимые, поэтому ученые только предполагают их наличие. Их величина может быть равной размеру всего 1 атома или же миллиарда солнц.

На этой художественной визуализации показан квазар, который является сверхмассивной черной дырой, окруженной вращающимися частицами. Этот квазар расположен в центре галактики. Квазары находятся на ранней стадии зарождения черной дыры, тем не менее, они могут существовать миллиарды лет. Все-таки считается, что они были сформированы в древние эпохи Вселенной. Предполагают, что все «новые» квазары просто были скрыты от нашего взора.

Телескопы Spitzer и Hubble зафиксировали ложные цветные струи частиц, выстреливающих из гигантской мощной черной дыры. Полагают, что эти струи простираются сквозь 100 000 световых лет пространства, такого же большого, как Млечный Путь нашей галактики. Разные цвета появляются от различных световых волн. В нашей галактике есть мощная черная дыра Sagittarius A. Nasa считает, что ее масса равна 4 миллиона наших солнц.

На этом изображении представлен микроквазар, считающийся уменьшенной черной дырой с такой же массой, как и у звезды. Если бы вы попали в черную дыру, вы бы пересекли временной горизонт на ее границе. Даже если вас не раздавит сила тяжести, обратно из черной дыры вам уже не вернуться. Вас невозможно будет увидеть в темном пространстве. Каждый путешественник в черную дыру будет разорван в результате воздействия силы гравитации.

Спасибо что рассказали о нас друзьям!

Такое название она получила из-за того, что поглощает свет, но не отражает его как другие объекты. На самом деле фактов про черные дыры существует множество, и о некоторых самых интересных мы сегодня расскажем. До относительно недавнего времени считалось, что черная дыра в космосе всасывает в себя все, что рядом с ней находится или пролетает: планеты мусор, но, недавно ученые стали утверждать - содержимое через некоторое время «выплевывается» обратно, только совершенно в другом виде. Если вас интересуют черные дыры в космосе интересные факты о них мы сегодня расскажем подробнее.

Существует ли угроза для Земли?

Есть две черные дыры, которые могут представлять реальную угрозу нашей планете, но находятся они, к счастью, для нас далеко на расстоянии примерно 1600 световых лет. Ученые смогли обнаружить эти объекты только потому, что находились они вблизи Солнечной Системы и специальные приборы, улавливающие рентгеновские лучи, смогли их увидеть. Есть предположение, что огромная сила гравитации способна повлиять на черные дыры таким образом, что они сольются в одну.

Вряд ли кто-то из современников сможет застать тот момент, когда эти таинственные объекты исчезнут. Настолько медленно происходит процесс гибели дыр.

Черная дыра - это звезда в прошлом

Как образуются черные дыры в космосе ? Звезды имеют внушительный запас термоядерного топлива, из-за чего они и светятся так ярко. Но все ресурсы заканчиваются, и звезда охлаждается, постепенно теряя свое свечение и превращаясь в черного карлика. Известно, что в остывшей звезде происходит процесс сжатия, в итоге она взрывается, а ее частицы разлетаются на огромные расстояния в космосе, притягивая соседние объекты, тем самым увеличивая размер черной дыры.

Самое интересное про черные дыры в космосе нам еще предстоит изучить, но удивительно, плотность ее, несмотря на внушительные размеры, может равняться плотности воздуха. Это говорит о том, что даже самые крупные объекты космоса могут иметь такой же вес, как воздух, то есть быть невероятно легкими. Вот как появляются черные дыры в космосе .

Время в самой черной дыре и возле течет очень медленно, поэтому объекты, пролетающие рядом замедляют свое движение. Причиной всему огромная сила гравитации, еще более удивительный факт, все процессы, происходящие в самой дыре, имеют невероятную скорость. Допустим, если наблюдать за тем как выглядит черная дыра в космосе , находясь за границами всепоглощающей массы, кажется, что все стоит на месте. Однако стоит только попасть внутрь объекту, его в мгновение бы разорвало. Сегодня нам показывают, как выглядит черная дыра в космосе фото , смоделированное специальными программами.

Определение черной дыры?

Теперь мы знаем откуда берутся черные дыры в космосе . Но что в них еще особенного? Сказать, что черная дыра - это планета или звезда невозможно априори, потому что это тело не газовое и не твердое. Это объект, который способен искажать не только ширину, длину и высоту, но и временную шкалу. Что совершенно не поддается физическим законам. Ученые утверждают, что время в районе горизонта пространственной единицы может двигаться вперед и назад. Что находится в черной дыре в космосе невозможно себе представить, световые кванты, попадающие туда, умножаются в несколько раз на массу сингулярности, этот процесс увеличивает мощь гравитационной силы. Поэтому, если взять с собой фонарик и отправиться черную дыру, светиться он не будет. Сингулярность - точка, в которой все стремится к бесконечности.

Структура черной дыры - это сингулярность и горизонт событий. Внутри сингулярности физические теории полностью теряют свой смысл, поэтому до сих пор она остается загадкой для ученых. Пересекая границу (горизонт событий), физический объект теряет возможность вернуться. Мы знаем далеко не все о черных дырах в космосе , но интерес к ним не угасает.

Черные дыры во Вселенной

В научно-популярной литературе, статьях о Вселенной часто можно встретить термин «черная дыра». У читателя, впервые прочитавшего это словосочетание, сразу возникает образ, скажем, отверстия в стене, отгораживающей темную комнату, иначе, обыкновенная дырка. Упоминание о дырах во Вселенной, первоначально также ассоциируется с неким отверстием в небесах. Последнее суждение отчасти верно, но физическая сущность черной дыры гораздо сложнее, чем может показаться на первый взгляд. Так что же такое черная дыра? В современной науке черной дырой принято называть область пространства-времени, в которой гравитационное поле (тяготение) столь сильно, что ни один объект (даже излучение) не может вырваться из нее. Название же «черная дыра» ввел в обиход в 1968 году американский физик Джон Уилер (John A. Wheeler) в своей статье об этих удивительных небесных объектах. Новый термин сразу стал популярен, заменив собой использовавшиеся до того названия «коллапсар» и «застывшая звезда». Значит, эти небесные объекты попросту подобие звезды (черные шары?), но с очень сильным полем тяготения? Но это будет слишком простым (и не совсем верным) описанием, пожалуй, самых таинственных объектов во Вселенной. Чтобы глубже понять, что же это такое, вернемся ненадолго во времена великого физика Исаака Ньютона, открывшего закон всемирного тяготения. Легенда о яблоке, упавшем на голову Ньютона, может носить спорный характер, но, как бы там ни было, гениальная догадка ученого позволила вывести закон об универсальной силе, действию которой подвержено абсолютно все! Поле тяготения действует не только на объемные тела, которые притягиваются друг к другу, но на микрочастицы и даже на свет. Это очень важный момент, самым кардинальным образом связанный с изучением свойств черных дыр. Первым, кто допустил существование невидимых звезд, был ученый 18-19 веков Пьер Симон Лаплас (1749 – 1827), знаменитый тем, что создал теорию образования планет Солнечной системы из разряженной материи (облака). О невидимых звездах Лаплас впервые написал в 1795 году. Руководствуясь законом всемирного тяготения, он пришел к выводу, что звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми.



Посмотрите также изображения черных дыр (период - февраль2004*февраль2005) с сервера наших коллег Вселенная сегодня

В наше время доказать это может любой школьник, знающий основы физики. Действительно, чем больше космическое тело, тем большую скорость нужно набрать, чтобы навсегда покинуть его. Эта скорость называется второй космической, и для Земли равна 11 км/сек. Но вторая космическая скорость тем больше, чем больше масса и чем меньше радиус небесного тела, т.к. с увеличением массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает. На Солнце 2-я космическая скорость равна 620 км/сек, но на его поверхности. Если же представить, что Солнце сжали до радиуса 10 километров, оставив при этом массу прежней, то 2-я космическая скорость увеличится до половины скорости света или 150 тысяч километров в секунду! Значит, если радиус Солнца уменьшать еще дальше (оставляя массу неизменной), то наступит такой момент, когда вторая космическая скорость достигнет световой или 300 000 км/сек! Лаплас, конечно, не брал в расчет сжатие небесных тел, что играет самую важную роль в образовании черных дыр, но он позволил понять главное: небесное тело, на поверхности которого вторая космическая скорость превышает скорость света, становится невидимой для внешнего наблюдателя! Иначе, свет пытается вырваться в пространство, но гравитация не позволяет ему этого сделать, и со стороны мы можем видеть лишь черное пятно в космосе, проще говоря, некую дыру! Подобные выводы были сделаны современником Лапласа английским геологом Дж. Мичеллом в 1783 году, но его труды менее известны.

Итак, мы убедились, что могут существовать невидимые небесные тела, которые в реальности существуют, но не могут быть наблюдаемы с Земли в виду отсутствия излучения от них. Все это казалось убедительным до того, как научный мир не познакомился в начале 20 века с теорией еще одного великого физика – Альберта Эйнштейна. Но убедительность Лапласа и Митчела все же была шаткой по той простой причине, что в их времена еще не знали, что скорости выше скорости света в природе просто не существует. Общая теория относительности позволила сделать большой шаг к определению черной дыры в современном ее понимании. Чтобы понять суть различия между тяготением по Ньютону и тяготением по Эйнштейну, вернемся к опыту со сжатием Солнца. Закон Ньютона гласит, что при сжатии вдвое гравитация возрастает вчетверо, но Эйнштейну удалось блестяще доказать, что гравитация будет расти быстрее, и чем дальше мы сжимаем тело, тем быстрее будет расти гравитация. Если следовать ньютоновскому тяготению, то гравитация станет бесконечно большой, если радиус станет равным 0. Эйнштейн же нашел, что тяготение становится бесконечным при так называемом гравитационном радиусе небесного тела. Сфера описываемся таким радиусом, называется также сферой Шварцшильда. Иначе, тело не сожмется в точку, оно будет иметь определенные размеры, но гравитацию, стремящуюся к бесконечности. Гравитационный радиус напрямую зависит от массы небесного тела. Например, гравитационный радиус Земли равен 10мм (при настоящем – 6400км), а для Солнца 3000м (700000 км). Итак, теория гласит о том, что любое небесное тело (звезда, планета) сжавшееся до гравитационного радиуса, перестает быть источником излучения, т.к. свет или любое другое излучение не может покинуть данное тело по причине того, что 2-я космическая скорость от гравитационного радиуса и меньше будет выше скорости света. Остается один вопрос: что и каким образом может сжать звезду до гравитационного радиуса. Ответ: сама звезда! Пока звезда «живет» внутри ее происходят термоядерные реакции создающие потоки излучения к поверхности газового шара. Но вещество (водород) для реакций ограничено, и за время от нескольких десятков миллионов до миллиардов лет иссякает.

После того, как водородное топливо будет израсходовано, внутреннее давление создаваемое ранее реакциями исчезнет, и звезда начнет сжиматься под действием собственной гравитации примерно так, как мы сжимает руками большой кусок ваты. Некоторые звезды сжимаются очень быстро – катастрофически. Происходит так называемый гравитационный коллапс. Разрешив вопрос о сжатии звезд, мы подошли к самому главному – вопросу существования черных дыр. Мы выяснили, что теоретически такие объекты могут существовать, но как найти их практически? Ведь, по словам знаменитого философа Конфуция, приходится искать черную кошку в темной комнате, и неизвестно есть ли она там вообще. Поиск таинственных объектов начинался с рентгеновских источников излучения, т.е. тех, которые излучают всем известные лучи Рентгена, широко использующиеся в медицине для съемки костей и внутренних органов человека. У рентгеновских источников есть замечательное свойство: они излучают только при нагревании окружающего газа до сверх высоких температур. Но чтобы нагреть газ до такой температуры, нужно чтобы поле тяготения было очень сильным. Такими полями обладают сжавшиеся звезды (белые карлики, нейтронные звезды и…. черные дыры!). Но если белые карлики можно наблюдать непосредственно, то как вычислить черную дыру? Астрономы разрешили и эту задачу. Выяснилось, что если сжавшаяся звезда имеет массу в два раза превышающую массу Солнца, то самый вероятный кандидат в черные дыры. Измерить же массу небесного тела легче всего если он существует в паре с другим, проще говоря, в двойной системе по его орбитальному движению. Поиск подобных двойных систем, которые к тому же излучают в рентгене увенчался успехом. Астрономы нашли такую систему в созвездии Лебедя, выяснив что, по крайней мере, один из компонентов обладает массой, превышающей критическую, т.е. более двух солнечных масс. Созвездие Лебедя лучше всего наблюдать летом и осенью, когда оно видно прямо над головой. Объект был назван Лебедь Х-1, и является первым объектом – кандидатом в черные дыры. Он расположен на расстоянии 6000 световых лет от Земли и состоит из двух тел: нормальной звезды-гиганта массой около 20 солнц и невидимый объект массой 10 солнц, излучающий в рентгеновском диапазоне. Но позвольте, скажете вы, как же может излучать черная дыра, если мы только что говорили, что ничто не может покинуть ее! Да, это верно, но дело в том, что излучает не сама черная дыра, а лишь вещество, падающее на черную дыру. Именно по излучению падающего вещества мы можем оценивать присутствие черной дыры.

Обладая мощным тяготением, черная дыра забирает у своего компаньона часть вещества, как бы высасывает материю, которая по спирали устремляется к черной дыре. Чем ближе вытягиваемое вещество к черной дыре, тем сильнее оно разогревается и, наконец, начинает излучать в рентгеновском диапазоне, что и фиксируют земные приемники излучения. При достижении окрестностей гравитационного радиуса (откуда еще может вырваться излучение) газ разогревается до 10 миллионов градусов, а рентгеновская светимость этого газа в тысячи раз превосходит светимость Солнца во всех диапазонах! Вспышки излучения видны не менее, чем в 200 километрах от центра черной дыры, а ее действительные размеры составляют около 30 километров. Итак, черные дыры существуют, и в действительности представляют из себя чрезвычайно сжатую область пространства-времени (для простоты – сверхплотный шар), которую не способно покинуть никакое излучение. Следует отметить, что благодаря необычности черных дыр средства массовой информации спекулируют на их свойстве поглощать окружающее вещество. Пройдя около Земли, черная дыра вполне может своим тяготением изменить форму Земли и начать затягивать ее вещество внутрь себя. Но подобное событие крайне маловероятно, тем более, как было сказано, ближайшие из них находятся на расстоянии в несколько тысяч световых лет. Поэтому даже если допустить, что черная дыра вдруг направится к Земле, то достичь она сможет ее только через несколько тысяч лет, и это при том, что двигаться она будет со скоростью света. При этом должно соблюдаться условие точной направленности к Земле, что на таком расстоянии теряет всякий смысл. Поэтому с полной уверенностью можно сказать, что гибель от черной дыры человечеству не грозит…. Ведя рассказ о черных дырах, мы всегда говорили о внешнем наблюдателе, т.е. пытались обнаружить черную дыру извне.

А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик – звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый - черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй - сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр - одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения - приблизительно 2000–20 000 электрон-вольт (для сравнения, энергия оптического излучения - около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000–300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» - первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это - серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

ДОПОЛНЕНИЕ

Начат учет черных дыр

Небо в гамма-лучах (точками показаны источники гамма-излучения). Изображение с сайта http://www.esa.int/

Самые большие из черных дыр - супермассивные, которые в миллионы и миллиарды раз превышают массу Солнца, а каждая из них находится в центре большинства галактик. Эти гравитационные монстры обладают огромным «аппетитом». Все больше увеличивая свою массу, они уже поглотили окружающее их вещество на «сумму» в миллионы Солнц, но еще не насытились, продолжая свое формирование дальше. В постоянное меню черной дыры входят: газ, пыль, планеты и звезды, но иногда приверженцы коллапса позволяют себе полакомиться и «деликатесами». На «десерт» черные дыры предпочитают компактные массивные объекты, например, черные дыры звездной массы, нейтронные звезды и белые карлики, ненароком попавшие в поле тяготения сверхмассивного объекта. Именно эти объекты издают самые «громкие крики» во Вселенную в рентгеновском и гамма диапазоне, когда черная дыра «лакомится» ими. Казалось бы, достаточно вывести на орбиту космический телескоп с детекторами гамма-лучей и начать успешные поиски гамма-всплесков от черных дыр, переписав таким образом все подобные объекты. Для этих целей в конце 2002 года на орбиту был выведен спутник «Интеграл» (Integral) космического агентства ESA, способный просматривать небо в гамма-диапазоне. Но и здесь Вселенная заставляет ученых пробираться сквозь тернии.

Поскольку все небо заполнено фоновым гамма-излучением, это мешает находить слабые гамма-всплески от очень далеких источников, занижая, таким образом, действительное количество черных дыр, что сказывается на правильности космологических теорий. Чтобы обойти это препятствие, международная группа, включающая российских ученых Евгения Чуразова и Рашида Сюняева из Института космических исследований, предложила откалибровать приборы «Интеграла» с учетом уровня фонового гамма-излучения. Для этого они решили направить приемники излучения «Интеграла» в сторону Земли, которая «своим телом» закрыла бы общий фон неба. Данное мероприятие было весьма рискованным по причине яркости Земли для устройств «Интрегала», работающих в оптическом диапазоне. Оптика космический обсерватории могла «ослепнуть», т.к. настроена на далекий космос, который на несколько порядков слабее, чем близкая планета. Но ученые провели эксперимент без «потерь», и риск был оправдан. Используя естественный щит от излучений, астрономы замерили уровень приходящего излучения и сравнили полученные записи наблюдений с более ранними. Это позволило найти «нулевую» точку излучений, от которой теперь будет вестись отсчет при анализе новых полученных данных. Таким образом, исключая общий гамма-фон, исследователи смогут более точно выявлять местонахождение черных дыр, уточняя их количество и распределение в пространстве. До запуска «Интеграла» в гамма-диапазоне удалось пронаблюдать всего несколько десятков объектов. К настоящему времени, при помощи этого космического телескопа удалось найти 300 отдельных источников в нашей Галактике и около 100 самых «ярких» черных дыр в других галактиках. Но это только вершина айсберга. Астрономы уверены, что существуют десятки миллионов черных дыр, излучение от которых сливается с фоновым. Все их должен будет обнаружить «Интерграл», что позволит навести идеальный порядок в космологических теориях.

Интересные факты из жизни черных дыр

Поглощение звезды черной дырой в представлении художника. Изображение: NASA/JPL

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.

Мультимедийный видеоролик по теме . Черные дыры, джеты и квазары, movie file (mov, 8,3Mb, 71 сек) Черные дыры так плотны и тяжелы, что ничто - даже свет, не может уйти от нее. Эти объекты очень загадочны. Черные дыры могут поглощать окружающий газ и звезды. Они находятся в центрах галактик и квазаров и могут создавать мощные джеты высокой энергии из закрученных в спираль дисков, которые их окружают. Это видео показывает некоторые наблюдения черных дыр, джетов и квазаров. Схематическое изображение черной дыры (35,2Kb, фото)