Open
Close

Защитное заземление или зануление обеспечивает защиту. В чем разница: зануление и заземление

Введение

Защитное заземление, (зануление), является основной мерой защиты металлоконструкции. Основная цель этого мероприятия - защитить от возможного удара током пользователя прибора при замыкании на корпус в том случае, например поражения электрическим током в случае замыкания фазного провода на, когда нарушена изоляция. Иными словами, заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током. Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с "землей", а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередач. Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 ом. С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией.


Заземление - преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды - используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ

Терминология

· Глухозаземлённая нейтраль - нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока.

· Изолированная нейтраль - нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Обозначения

Обозначение на схемах (два символа справа)

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

· T - непосредственное соединения нейтрали источника питания с землёй;

· I - все токоведущие части изолированы от земли.

Вторая буква определяет состояние открытых проводящих частей относительно земли:

· T - открытые проводящие части заземлены, независимо от характера связи источника питания с землёй;

· N - непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи - функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

· S - функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

· C - функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:

· Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

· Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения - УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды - время срабатывания УЗО).

Разновидности систем заземления

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. ProtectionEarth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, данная система все еще встречается в постройках стран бывшего СССР.

Система TN-S


Разделение нулей в TN-S и TN-C-S

На замену условно опасной системы TN-C в 1930-х годах была разработана система TN-S (фр.Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция - электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи - отдельный нулевой защитный проводник (PE).

Система TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

Система IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения.

Зануление - это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью.

Принцип действия

Принцип действия зануления

Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с.

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком , нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

Наверняка каждый электрик-новичок слышал о таком способе защиты от поражения током, как заземлении электроприборов. Монтаж трехпроводной электросети является обязательным моментом при строительстве современного дома. Но что делать, если Вы живете в старой квартире, в которой при строительстве еще не применялась такая система защиты? В этом случае нужно сделать так называемое зануление электропроводки. О том, что собой представляют обе системы и в чем разница зануления и заземления, читайте далее!

Основные отличия

Как первая, так и вторая система защиты выполняет одну и ту же функцию – защита человека от поражения электричеством при прикосновении к оголенному проводу либо электроприбору, на котором происходит . Разница лишь в том, что зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода, а заземление мгновенно отводит опасное напряжение на землю. Это и есть их общее отличие друг от друга, если говорить в двух словах.

Если рассматривать вопрос более подробно, то нужно остановиться на том, какой принцип действия у каждого варианта защиты, на основании чего сразу же будет видна разница альтернативных вариантов. Заземление работает следующим образом: к корпусу опасных электроприборов и подключается заземляющий провод, который идет на соответствующую шину в распределительном щитке. Оттуда общий земляной провод выходит к главному заземляющему контуру – металлической конструкции, вкопанной в землю рядом с домом (как показано на фото). Если произойдет пробой тока на корпус прибора либо контакт с оголенной токоведущей жилой, опасность минует человека.

Что касается зануления, оно собой представляет соединение корпуса электроприбора с нейтральным проводом сети – нулем. В результате образуется замкнутый контур, как показано на схеме ниже. При возникновении опасной ситуации произойдет и автоматические выключатели на вводном щитке моментально отключат электроэнергию.
Наглядно увидеть разницу между занулением и заземлением Вы можете на данной схеме:

Надеемся, теперь Вам стало понятно, чем отличаются обе защитные системы и что не менее важно – как они работают. Рекомендуем также просмотреть разницу между ними на наглядном видео примере:

Отличие альтернативных вариантов

Что лучше?

Чтобы Вы полностью усвоили материал, для начала предоставим отличия в использовании каждой системы, на основании чего и сделаем собственный вывод.

  • Заземление дома можно запросто сделать своими руками, имея под рукой сварочный аппарат и немного металла. В то же время для создания зануления требуются определенные знания, связанные с расчетами и выбором оптимальной точки подключения провода к нейтрали.
  • Если произойдет в распределительном щитке, система зануления не будет работать, и Вы можете стать жертвой поражения электрическим током. В этом плане с системой защитного заземления проще, т.к. в отличие от нуля провод PE не отгорает и практически не отваливается, если хотя бы раз в год подтягивать клемму. Хотя насчет этого можно сказать, что контур «земли» из-за того, что находится на улице, также может со временем повредиться, особенно в местах сварки электродов. Опять-таки, если Вы делаете ежегодную ревизию, проблем не будет.
  • Исходя из этого, можно сделать такой вывод – не сложно сделать своими руками и к тому же такая система более долговечная, а значит и безопасная. Что касается зануления, для его создания нужен вызов мастера и в то же время более частый осмотр целостности нулевого провода, что является огромным минусом при сравнении отличий. Такой вариант не рекомендуется использовать, лучше подключить УЗО для защиты. Надеемся, что теперь Вы поняли, в чем разница зануления и заземления, как работают обе системы и какая более эффективная для дома и квартиры.

    Отличительные признаки — часть 1

Чем отличается заземление от зануления? Специалисты разобрались с этим вопросом. Все это — защитные меры от пиковых токов. Предусматривают работу по недопущению поражения электричеством человека и бытовых приборов. Названия разные, но все это — системы защиты.

Чтобы понять, в чем разница между заземлением и занулением, нужно знать назначение и принцип работы электрических устройств.

Принцип действия

Заземляющий контур электрической цепи – система проводов, соединяющая каждого потребителя, в обслуживаемой цепи, со специальным заземляющим контуром здания. При пробое на корпус прибора или утечке тока с поврежденной проводки, ток проходит по проводам к заземлителю.

Сопротивление заземления, как правило, выполняется меньше, чем сопротивление всей цепи. Поэтому ток течет по «легкому» пути и отводится с корпусов оборудования.

Занулением называется выполнение электрического соединения токопроводящих корпусов приборов с глухозаземленной нейтралью. При возникновении пиковых значений тока, его потенциал отводится, с помощью шины зануления, в специальную щитовую или на трансформаторную будку. Главное его назначение – в случаях пробоев и утечек напряжения на корпус оборудования, вызывается короткое замыкание, сгорают предохранители или срабатывают автоматические размыкатели цепи.

Это и есть главное отличие заземления от зануления. Заземляющий контур принимает на себя токи КЗ, зануление вызывает срабатывание предохранительных устройств.

Разберем подробнее работу систем защиты от воздействия электрического тока.

Особенности заземляющего устройства

Основной целью заземляющего контура является понижение потенциала при пробое на корпус и коротком замыкании, до безопасного значения. При этом, на корпусе оборудования понижается напряжение и сила тока, до безопасного уровня. На производстве заземляют корпуса электрооборудования, зданий и помещений от воздействия атмосферных токов.

При монтаже контура, в сети трехфазного тока не более 1000 В, применяют изолированную нейтраль. При больших уровнях напряжения сети, монтируется система с разными режимами нейтрали.

– это целая система, включающая в себя:

  • заземлитель;
  • заземляющие горизонтальные проводники;
  • подводящие провода.

Заземлитель подразделяют на искусственный и естественный.

При возможности следует использовать естественный заземлитель:

  • подземные трубопроводы водоснабжения. Но в этом случае, необходимо оборудовать трубопровод защитой от блуждающих токов;
  • подключаются на металлоконструкции цехов и помещений;
  • стальная или медная оплетка кабеля;
  • трубопроводы в скважине.

По нормам ПУЭ запрещено подключать заземляющий контур на трубы отопления и с пожароопасными материалами.

При искусственном оснащении, заземляемое оборудование предохраняется путем изготовления контура в виде равностороннего треугольника из металлических штырей или уголков. Для щелочной и кислой почвы, рекомендуется использовать медный, оцинкованный заземлитель. Для изготовления контура в виде треугольника, необходимо углубиться в землю на 70 см.

Нельзя устанавливать групповые заземлители в пробуренные отверстия. Их необходимо забить в месте разметки, на глубину, не менее 2-х метров. Затем, соединяют заземлители в единую конструкцию с помощью отрезков стальной полосы.

Корпуса каждого прибора должны обязательно подключаться к системе защиты. При этом, нельзя подключать несколько потребителей последовательно, каждое устройство обязано обустраиваться линией подключения.

Теперь о главном – значение уровня сопротивления контура. В него суммируется сопротивления каждого прибора цепи и его проводов. При расчете сопротивления контура, следует учитывать уровень значения грунта, размеры и глубину забивания заземлителей. Необходимо учитывать температурные особенности региона обустройства контура.

Помните – при жаркой погоде, место установки следует заливать водой, почва при высыхании меняет уровень сопротивления.

При обслуживании сетей до 1000. В и мощности оборудования свыше 100 кВА – сопротивление контура не более 10 Ом. В бытовых сетях оптимальным значением будет 4 Ома. Напряжение при прикосновении должно быть меньше 40 В. Сети свыше 1000 В защищаются устройством с сопротивлением не более 1 Ома.

Это некоторые особенности и принцип действия заземления. Более подробно, вы можете ознакомиться в статьях по этой теме на сайте.

Особенности и принцип действия зануления

Назначение зануления — метод защитного устройства позволяет провести подключение корпусов оборудования и других деталей из металлов с нейтралью (нулевой защитный проводник). В условиях с заземленным защитным проводником и напряжением в сети не более 1000 В, используется схема зануления.

При пробое фазного тока на корпусе электроприборов и оборудовании происходит КЗ фазы. При этом, срабатывают автоматы защитного отключения тока и цепь размыкается. Этим и отличаются две защитные системы.

К приборам зануления относят:

  • плавкий предохранитель;
  • автомат отключения тока;
  • встроенные в пускатели, тепловые реле;
  • контактор с тепловой защитой.

Возникла ситуация пробоя фазного напряжения. При этом от корпуса электроустановки ток проходит по нейтрали на обмотку трансформатора. Затем, от него по фазе — на предохранитель. Плавкие предохранители сгорают от пиковых значений тока, в электрическую цепь прекращается подача напряжения.

При этом, ноль беспрепятственно проводит ток, позволяя сработать защите. Его прокладывают в безопасном месте, запрещается оснащать его дополнительными выключателями и другими устройствами. Значение уровня проводимости провода фазы должно быть наполовину больше нулевого проводника. Как правило, в этом случае используют стальные пластины, оболочки кабеля и другие материалы.

Зануляющие проводники проверяют на исправность при сдаче работ по подключению и проводке электроэнергии в здании, а также, через определенное количество времени, при пользовании электрической схемой. Не менее одного раза в период 5 — летнего срока, производятся замеры значений сопротивления всей цепи фазного и нулевого проводника на корпусах самого дальнего оборудования от щита электропроводки, а также самого мощного оборудования в помещении.

Защитное зануление, в некоторых случаях, может выполнять работу защитного отключения . При этом, отличаются эти 2-е защитных системы тем, что в случае защитного отключения цепи, его можно использовать в любых условиях, при различных режимах заземляющего проводника, показателей напряжения цепи. В таких сетях можно обойтись и без провода нулевого подключения.

Расчет зануления необходимо производить с учетом всех условий работы и принципа его действия.

Защитное отключение выполняют с использованием защитной системы, которая отключает электрооборудование автоматически. При возникновении аварийных ситуаций и угроз поражения и нанесения электротравм человеку, к таким ситуациям можно отнести:

  • короткое замыкание фазного провода на корпус;
  • повреждение изоляции электрической проводки;
  • неисправности на заземляющем контуре;
  • нарушения целостности зануляющих проводников.

Эта защитная система нередко используется при невозможности провести защитные системы заземления и зануления. Но на ответственных участках, возможна установка защитного отключения и как дополнительный контур защиты человека и оборудования от поражения токами утечки и короткого замыкания.

При этом, их подразделяют, в зависимости от величины тока на входе и изменений реакции защитных устройств, на несколько схем:

  • наличия напряжения на корпусе оборудования;
  • силу тока при замыкании на провод земли;
  • напряжения или силу тока в нулевом проводнике;
  • уровня напряжения на фазе относительно значения на проводе земли;
  • устройства для постоянного или переменного тока;
  • устройства комбинированные.

Все системы защиты и отключения подачи тока в сеть оснащаются автоматическими выключателями. В их конструкции предусмотрена установка специального оборудования защитного отключения. При этом, период времени для отключения сети не должен превышать 2-е десятые секунды.

В заключение разберем вопрос, который может задать начинающий электрик.

Взаимозаменяемость защитных систем

Можно ли установить зануление вместо заземления? На этот вопрос любой специалист ответит «да», но только в промышленном здании.

В жилом помещении применять такую схему защиты следует в очень редких случаях, и только в нежилых помещениях. Это обусловлено, в первую очередь, с неравномерной нагрузкой на провод фазы и нейтрали. При работе, на провода каждой фазы поступает одинаковая нагрузка, но по нейтрали общей цепи проходит достаточно малый ток. Каждому известно, что нельзя касаться фазы, но можно выполнять работу с нолем под нагрузкой.

При этом, сечение нулевого провода меньше провода фазы. При долгом использовании он окисляется на скрутках, нарушается слой изоляции при нагреве, в худшем случае он просто отгорит. При этом, напряжение фазы подходит к щитовой, затем, через провод ноля идет к потребителю. Корпуса приборов находятся под напряжением, повышается возможность поражения человека током.

Как советуют некоторые умельцы в Интернете, можно подвести к каждому бытовому прибору провода системы зануления, но это повлечет за собой значительные траты на проводку и последующий ремонт. Поэтому занулять источники в жилых помещениях нельзя.

Лучше в электрощите установить устройство защитного отключения и спокойно пользоваться бытовыми приборами. Каждое защитное устройство выполняет свое предназначение, при правильном расчете, монтаже и его использовании.

Одним из основных защитных мероприятий является заземление, заключающееся в преднамеренном электрическом соединении корпуса электроустановки и заземляющего устройства. Существует два варианта - заземление и зануление электроустановок. Их основной функцией является защита от воздействия электрического тока во время прикосновения человека к корпусу устройства или его отдельным частям. Как правило, эти части оказываются под напряжением, в результате нарушения изоляции.

Особенности защитного заземления

Чаще всего, применяется защитное заземление. В настоящее время используются специальные , оборудованные заземляющими контактами. Эффективность заземляющего устройства тем выше, чем ниже его сопротивление.

При пробое изоляции корпус прибора нередко оказывается под напряжением. При наличии заземления, ток не будет представлять опасности, он просто уйдет в землю по заземлителю, обладающему низким сопротивлением. Кроме заземлителя, в состав заземляющего устройства входят заземляющие проводники.

Заземлители могут быть естественными, состоящими из металлических конструкций зданий и сооружений, соединенных с землей. Искусственные заземлители изготавливаются из стальных труб, уголков или стержней, длина которых должна быть не менее 2,5 м. Они забиваются в землю и соединяются между собой стальными полосами или проволокой.

Благодаря защитному заземлению значительно снижается опасное напряжение. Его можно уменьшить за счет применения большого количества дополнительных искусственных заземлителей.

Применение защитного зануления

В отличие от заземления, защитное зануление заключается в преднамеренном электрическом соединении тех частей электроустановок, которые нормально не находятся под напряжением. У них имеется и нулевой провод.

При замыкании на корпус установки какой-либо фазы, возникает короткое замыкание этой фазы и нулевого провода. Величина тока, в этом случае, значительно возрастает по сравнению с обычным защитным заземлением. Поврежденное оборудование быстро и полностью отключается, что и является главной целью зануления.

Существует два проводника, выполняющих различные функции. Роль нулевого рабочего проводника состоит в питании электроустановок. В нем такая же изоляция, как и в других проводах, через его сечение свободно проходит рабочий ток. Основным назначением нулевого защитного проводника является создание короткого замыкания на кратковременный период. При этом, происходит быстрое отключение, обеспечивающее .

Таким образом, заземление и зануление электроустановок позволяет не только надежно защитить их, но и уберечь от поражения электрическим током.