Open
Close

Расчёт заземления онлайн. Как выполнить расчет заземления для контура частного жилого здания

Система заземления обеспечивает безопасность жильцов и бесперебойное функционирование электробытовой техники. Заземление предотвращает поражение током в случае утечек электричества на нетоковедущие элементы из металла, возникающих при повреждении изоляции. Создание системы безопасности - ответственное мероприятие, поэтому перед его проведением необходимо произвести расчет заземления.

Естественное заземление

Во времена, когда перечень электробытовой техники в жилище ограничивался одним телевизором, холодильником и стиральной машиной, заземляющие устройства использовались редко. Защита от утечки тока возлагалась на естественные заземлители, такие как:

  • неизолированные металлические трубы;
  • обсадка водяных скважин;
  • элементы металлических заборов, уличные фонари;
  • оплетка кабельных сетей;
  • стальные элементы фундаментов, колонн.

Лучший вариант естественного заземления - водопроводная магистраль из стали. За счет своей большой длины водопроводы сводят к минимуму сопротивление току растекания. Эффективность водопроводов достигается еще и благодаря их прокладке ниже уровня сезонного промерзания, а потому на их защитные качества не влияют ни жара, ни холод.

Металлические элементы подземных железобетонных изделий подходят для заземлительной системы, если соответствуют следующим требованиям:

  • имеется достаточный (по нормам Правил устройства электроустановок) контакт с глинистой, супесчаной или влажной песчаной основой;
  • при строительстве фундамента арматура на двух или более участках была выведена наружу;
  • металлические элементы имеют сварные соединения;
  • сопротивление арматуры соответствует регламенту ПУЭ;
  • имеется электросвязь с шиной заземления.

Обратите внимание! Из всего перечня указанных выше естественных заземлений рассчитываются только подземные железобетонные конструкции.

Эффективность функционирования естественного заземления устанавливается на основе измерений, проведенных уполномоченным лицом (представителем Энергонадзора). На основе проведенных замеров специалист даст рекомендации относительно необходимости установки дополнительного контура к естественному контуру заземления. Если естественная защита отвечает требованиям нормативов, Правила устройства электроустановки указывают на нецелесообразность дополнительного заземления.

Расчеты для устройства искусственного заземления

Абсолютно точный расчет заземления произвести практически невозможно. Даже профессиональные проектировщики оперируют приблизительным количеством электродов и дистанциями между ними.

Причина сложности расчетов состоит в большом количестве внешних факторов, каждый из которых оказывает существенное влияние на систему. К примеру, нельзя предсказать точный уровень влажности, не всегда известна фактическая плотность грунта, его удельное сопротивление и так далее. В связи с неполной определенностью вводных данных итоговое сопротивление организованного контура заземления в конечном счете отличается от базового значения.

Разницу в проектируемых и реальных показателях нивелируют за счет монтажа дополнительных электродов или путем увеличения длины стержней. Тем не менее, предварительные расчеты важны, так как позволяют:

  • отказаться от лишних трат (или хотя бы уменьшить их) на покупку материалов, на земляные работы;
  • подобрать наиболее подходящую конфигурацию заземлительной системы;
  • выбрать правильный план действий.

Для облегчения расчетов существует разнообразное программное обеспечение. Однако чтобы разобраться в их работе, необходимы определенные познания о принципах и характере вычислений.

Компоненты защиты

Защитное заземление включает электроды, установленные в землю и соединенные электросвязью с заземляющей шиной.

В системе имеются такие элементы:

  1. Металлические стержни. Один или несколько металлических стержней направляют ток растекания в грунт. Обычно в качестве электродов используют отрезки длинномерного металла (трубы, уголок, круглые металлические изделия). В некоторых случаях используется листовая сталь.
  2. Металлический проводник, объединяющий несколько заземлителей в единую систему. Обычно в этом качестве используют установленный по горизонтали проводник в виде уголка, прута или полосы. Металлическую связь приваривают к концам закопанных в землю электродов.
  3. Проводник, соединяющий находящийся в грунте заземлитель с шиной, которая имеет связь с защищаемым оборудованием.

Два последних элемента называются одинаково - заземляющий проводник. Оба элемента выполняют идентичную функцию. Различие кроется в том, что металлосвязь находится в грунте, а проводник подключения заземления к шине располагается на поверхности. В связи с этим к проводникам предъявляются неодинаковые требования по устойчивости к коррозии.

Принципы и правила вычислений

Грунт - один из составляющих элементов системы заземления. Его параметры имеют важное значение и участвуют в расчетах так же, как и длина металлических деталей.

При проведении расчетов используют формулы, указанные в Правилах устройства электроустановок. Применяются переменные данные, собираемые установщиком системы, и постоянные параметры (есть в таблицах). К постоянным данным относится, например, сопротивление грунта.

Определение подходящего контура

Прежде всего необходимо выбрать форму контура. Конструкция обычно выполняется в виде определенной геометрической фигуры или простой линии. Выбор конкретной конфигурации зависит от размеров и формы участка.

Проще всего реализовать линейную схему, так как для монтажа электродов понадобится выкопать лишь одну прямую траншею. Однако установленные в линию электроды станут экранировать, что ухудшит положение с током растекания. В связи с этим при расчетах линейного заземления применяется поправочный коэффициент.

Наиболее распространенной схемой для создания защитного заземления выступает треугольная форма контура. По вершинам геометрической фигуры устанавливают электроды. Металлические штыри должны быть достаточно отдалены друг от друга, чтобы не препятствовать рассеиванию поступающих в них токов. Для обустройства защитной системы частного дома считается достаточным три электрода. Для организации эффективной защиты необходимо еще и правильно подобрать длину стержней.

Расчет параметров проводников

Длина металлических стержней важна, поскольку влияет на эффективность системы защиты. Имеет значение и длина элементов металлосвязи. Кроме того, от длины металлических деталей зависят расход материала и общие затраты на обустройство заземления.

Сопротивление вертикальных электродов определяется их длиной. Другой параметр - поперечные размеры - не влияет существенным образом на качество защиты. И все же сечение проводников регулируется Правилами устройства электроустановок, так как данная характеристика важна с точки зрения устойчивости к коррозии (электроды должны служить 5 – 10 лет).

При соблюдении прочих условий существует правило: чем больше металлических изделий участвует в схеме, тем выше безопасность контура. Работы по организации заземления довольно трудоемкие: чем больше заземлителей, тем больше земляных работ, чем длиннее стержни, тем глубже их нужно забивать.

Что выбрать: количество электродов или их длину - решать организатору работ. Однако на этот счет есть определенные правила:

  1. Стержни необходимо устанавливать ниже горизонта сезонного промерзания по крайней мере на 50 сантиметров. Это позволит отстранить сезонные факторы от влияния на эффективность системы.
  2. Дистанция между вертикально установленными заземлителями. Расстояние определяется конфигурацией контура и длиной стержней. Для выбора правильной дистанции нужно воспользоваться соответствующей справочной таблицей.

Нарезанный металлопрокат вбивают в грунт на 2,5 – 3 метра при помощи кувалды. Это довольно трудоемкая задача, даже если учесть, что из указанной величины нужно вычесть примерно 70 сантиметров глубины траншеи.

Экономное расходование материала

Так как сечение металла - не самый важный параметр, рекомендуется приобретать материал с наименьшей площадью сечения. Однако при этом нужно оставаться в пределах минимально рекомендуемых значений. Наиболее экономичные (но способные выдержать удары кувалды) варианты металлоизделий:

  • трубы диаметром 32 миллиметра и толщиной стенок от 3 миллиметров;
  • уголок равнополочный (сторона - 50 или 60 миллиметров, толщина - 4 или 5 миллиметров);
  • круглая сталь (диаметр от 12 до 16 миллиметров).

В качестве металлосвязи оптимальным выбором станет полоса из стали толщиной 4 миллиметра. В качестве альтернативы подойдет 6-миллиметровый стальной прут.

Обратите внимание! Горизонтальные стержни приваривают к вершинам электродов. Поэтому к расчетной дистанции между электродами следует добавить еще 18 – 23 сантиметра.

Наружный участок заземления можно изготовить из 4-миллиметровой полосы (ширина - 12 миллиметров).

Формулы для расчетов

Подойдет универсальная формула, с помощью которой рассчитывают сопротивление вертикального электрода.

При проведении вычислений не обойтись без справочных таблиц, где указаны примерные значения. Данные параметры определяются составом грунта, его средней плотностью, способностью задерживать воду, климатическим поясом.

Устанавливаем нужное количество стержней, не принимая во внимание показатель сопротивления горизонтального проводника.

Определяем уровень сопротивления вертикального стержня на основе показателя сопротивления заземлителя горизонтального типа.

На основании полученных результатов приобретаем нужное количество материала и планируем начало работ по созданию системы заземления.

Заключение

Поскольку самое высокое сопротивление грунта отмечается в сухое и морозное время, организацию заземлительной системы лучше всего запланировать именно на этот период. В среднем сооружение заземления занимает 1 – 3 рабочих дня.

До засыпки траншеи землей следует проверить работоспособность заземлительных устройств. Оптимальная среда для проверки должна быть как можно более сухой, в почве не должно быть много влаги. Поскольку зимы не всегда бывают бесснежными, проще всего заняться строительством системы заземления в летний период.

Для обеспечения безопасности эксплуатации электрооборудования производят расчет заземляющих устройств уже на стадии проектирования. Электроустановки напряжением до 1000 В при изолированной нейтрали и мощности трансформатора более 100 кВА должны иметь сопротивление защитного заземления не более 4 Ом. При мощности

Рис. 1. Схема контурного заземления электрооборудования:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземляющий магистральный проводник; 7 – заземлитель

Рис. 2. Схема выносного очагового заземления

электрооборудования:

Рис. 3. Схема выносного заземления электрооборудования при расположении электродов в ряд:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземлитель

трансформатора менее 100 кВА сопротивление заземления не должно превышать 10 Ом.

Сопротивление заземлителей растеканию тока зависит от их числа, размеров, удельного сопротивления грунта. Сопротивление одиночного стержневого заземлителя (электрода) определяется по формуле, Ом


(1)

где ρ – удельное сопротивление грунта, Ом·м; d – диаметр стержневого заземлителя, м; l – длина стержневого заземлителя, м; h – глубина размещения заземлителя, м

h = 0,5l + h 0 , (2)

где h 0 – расстояние от поверхности грунта до начала одиночного заземлителя, от 0,5 до 0,8 м.

Для заземлителей из угловой стали предварительно определяют эквивалентный диаметр по формуле

где С – ширина полок уголка, м.

Необходимые для расчета значения удельных сопротивлений грунтов приведены в табл. 1.

Таблица 1

Вид грунта

Пределы колебаний

величины удельных

сопротивлений грунтов, Ом·м

расчетов удельные

сопротивления грунтов, Ом·м

Суглинок

Садовая земля

Чернозем

Речная вода

40000 – 45000

Количество стержневых заземлителей, необходимых для достижения нормативного сопротивления заземляющего устройства, определяется по формуле

где R D – допустимое (нормативное) сопротивление заземления, Ом; η C – коэффициент сезонности; η I – коэффициент использования (экранирования) в вертикальных заземлителях.

Забитые электроды соединяются металлической полосой сечением не менее 48 мм 2 . Длина полосы для контура равна

L n = 1,05a(N – 1), (5)

а при расположении электродов в ряд

где a – расстояние между электродами, м; N – число электродов, шт.

Численные значения коэффициента сезонности в основном определяются колебанием влажности почвы в течение года и заданы в табл. 2.

Таблица 2

Глубина размещения (заложения), м

Сентябрь

Численные значения коэффициента использования (экранирования) для вертикальных заземлителей (электродов) при их размещении по контуру и в ряд (выносная схема) приведены в табл. 3.

Таблица 3

заземлителей

Отношение расстояния между электродами к их длине

размещение в ряд

размещение по контуру

Сопротивление растеканию электрического тока соединяющей полосы, уложенной в земле, определяется по формуле, Ом

где L – длина полосы, м; b – ширина полосы, м; h – глубина заложения полосы от поверхности земли, м.

Результирующее сопротивление растеканию электрического тока всего заземляющего устройства определяется по формуле

где η p – коэффициент использования (экранирования) горизонтальной соединительной полосы.

Численные значения коэффициента использования горизонтального полосового электрода в зависимости от числа вертикальных электродов, соединяемых им, приведены в табл. 4.

Таблица 4

Отношение расстояния между вертикальными электродами к их длине

Число вертикальных электродов

размещение в ряд

размещение по контуру

В современном мире, мы не представляет свою жизнь без использования электричества. Оно вокруг нас повсюду и именно оно позволило человечеству перейти на совершенно новый уровень развития. Переоценить его важность невозможно, однако при всех своих положительных качествах, за своей безобидностью и простотой, скрывается колоссальная энергия, которая представляет смертельную опасность.

Для того чтобы обезопасить помещения, где постоянно находятся люди, было создано специальное устройство - заземлитель. Это набор проводников, которые предназначены для отвода электрической энергии от приборов к грунту, тем самым исключая поражение током человека. Он состоит из заземлителей (горизонтальных и вертикальных стержней) и заземляющих проводников.

Наш сервис предлагает вам выполнить расчет заземления с помощью удобного онлайн-калькулятора. На основании типа грунта, климатической зоны и видов заземлителей, программа предоставит результат по сопротивлению отдельных стержней, а также общему сопротивлению на растекание. Мы работаем только по последним актуальным данным, в качестве источников использовались:

  • правила устройства электроустановок;
  • нормы устройства сетей заземления;
  • заземляющие устройства электроустановок - Карякин Р. Н.;
  • справочник по проектированию электрических сетей и электрооборудования - Барыбина Ю. Г.;
  • справочник по электроснабжению промышленных предприятий - Федорова А. А. и Сербиновского Г. В.

Калькулятор расчета заземления

Для того чтобы упростить расчеты, мы предлагаем вам воспользоваться простым и точным калькулятором расчета заземления.

Наш онлайн-калькулятор расчета заземления учитывает все поправочные коэффициенты и работает на основании приведенных формул. Для того чтобы выполнить надежный расчет, вам необходимо заполнить поля программы правильно.

  • Грунт . Укажите верхний и нижний слой грунта, а также глубину.
  • Климатический коэффициент. Поправка в расчетах на основании климатической зоны:
    • I зона — от -20 до -15°С (Январь); от +16 до +18°С (Июль);
    • II зона — от -14 до -10°С (Январь); от +18 до +22°С (Июль);
    • III зона — от -10 до 0°С (Январь); от +22 до +24°С (Июль);
    • IV зона — от 0 до +5°С (Январь); от +24 до +26°С (Июль);
  • Вертикальные заземлители. Количество вертикальных заземлителей (предполагаем любой число, по умолчанию 5), их длина и диаметр.
  • Горизонтальные заземлители. Глубина заложения горизонтальной полосы, ширина полки и длина стержня (берется из расчета 1:3, 1:2 или 1:1 к длине вертикального заземлителя - чем больше, тем лучше).
  • удельное электрическое сопротивление грунта;
  • сопротивление одиночного вертикального заземлителя;
  • длина горизонтального заземлителя;
  • сопротивление горизонтального заземлителя;
  • общее сопротивление растеканию электрического тока.

Последний параметр является определяющим . Следите, чтобы нормативное сопротивление (2 Ом — для 380 вольт; 4 Ом — для 220 вольт; 8 Ом — для 127 вольт) в электрических сетях было всегда больше, чем расчетное.

Пример расчета заземления на калькуляторе

Предположим, что наш дом расположен на черноземных почвах с толщиной пласта 0,5 м. Мы живем на юге России в четвертой климатической зоне. Предположительно, в качестве заземлителей будут использоваться 5 вертикальных электродов диаметром 0,025 м и длиной 2 м, горизонтальные стержни на глубине 0,5 м - длиной 2 м с шириной полки 0,05 м.

Тогда, перенеся все значения в калькулятор расчета заземления мы получим общее сопротивление на растекание равное 4,134 Ома.

Если в нашем частном доме однофазная сеть с напряжением в 220 Вт, то это значение недопустимо, так как этого заземления будет недостаточно .

Добавим еще один вертикальный электрод и получим значение 3,568 Ом. Это величина нам вполне подходит, а значит такое заземление гарантировано защитит вашу постройку и ее обитателей.

Если вы получаете значение близкое к критическому, то лучше увеличить количество или размер электродов. Помните, что расчет контура заземления крайне важен для безопасности!

Как рассчитать заземление в частном доме вручную

Как вы уже поняли, основной параметр, который необходимо рассчитать - это общее сопротивление на растекание, т.е. нужно подобрать такую конфигурацию электродов, чтобы сопротивление заземляющего устройства, не превышало нормативное. Согласно положениям правил устройств электроустановок (ПЭУ), необходимо соблюдать определенные максимумы для токов:

  • 2 Ом — для 380 вольт;
  • 4 Ом — для 220 вольт;
  • 8 Ом — для 127 вольт.

Правильный расчет начинается с подсчета оптимального размера и количества стержней. Для того чтобы сделать это вручную, легче всего воспользоваться упрощенными формулами, приведенными ниже.

  • R o - сопротивление стержня, Ом;
  • L - длина электрода, м;
  • d - диаметр электрода, м;
  • T - расстояние от середины электрода до поверхности, м;
  • p экв - сопротивление грунта, Ом;
  • ln — натуральный логарифм;
  • π — константа (3,14).

  • R н - нормируемое сопротивление заземляющего устройства (2, 4 или 8 Ом).
  • ψ - поправочный климатический коэффициент сопротивления грунта (1,3, 1,45, 1,7, 1,9, в зависимости от зоны).

Также очень важно, чтобы при выборе глубины залегания и длины заземляющих стержней, нижний конец проходил ниже уровня промерзания, так как при отрицательных температурах резко возрастает сопротивление грунта, и возникают определенные сложности.

Цель работы: ознакомиться с алгоритмом расчета защитного заземления методом коэффициентов использования заземлителей (электродов) по допустимому сопротивлению системы заземления растеканию тока.

Цель расчета: определение основных парамертров заземления (количества, размеров и размещения одиночных вертикальных заземлителей и горизонтальных заземляющих проводников)

1. Краткие теоретические сведения.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.

Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по назначению к потенциалу заземленного оборудования.

Заземляющим устройством называется совокупность вертикальных заземлителей – металлических проводников, находящихся в непосредственном соприкосновении с землей, и горизонтальных заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводы, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей. При этом в помещении с повышенной опасностью и особо опасных по условиям поражений током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности – при напряжении 380В и выше переменного 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от назначения установки.

Различают заземлители искусственные , предназначенные исключительно для целей заземления, и естественные – находящиеся в земле металлические предметы для иных целей (проложенные в земле металлически водопроводные трубы; трубы артезианских скважин; металлические каркасы зданий и сооружений и т.п.). Запрещается использовать в качестве естественных заземлителей трубопроводы горючих жидкостей, горючих и взрывоопасных газов, а также трубопроводы, покрытые изоляцией для защиты от коррозии. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока, и поэтому использование их для целей заземления дает большую экономию. Недостатками естественных заземлителей является их доступность и возможность нарушения непрерывности соединения протяженных заземлителей.

По форме расположения заземлителей заземление бывает контурное и выносное.

В контурном заземлении все электроды располагают по периметру защищаемой территории. В выносных (сосредоточенное или очаговое) –заземлители располагают на расстоянии друг от друга не менее длины электрода.

В соответствии с требованиями механической прочности и допустимого нагрева токами замыкания на землю в установках напряжением свыше 1000В заземляющие стальные магистральные проводники должны иметь сечение не менее 120 мм 2 , а в установках до 1000В – не менее 100 мм 2 .

Дополнительная информация (извлечения из ПУЭ – «Правила устройства электроустановок», 2000г.) приведена в Приложении 2.

2. Порядок расчета.

2.1 Определяют расчетный ток короткого замыкания по формуле:

I 3 = U л ∙ (35 l к + l в )/350 , А , (1)

2.2 Рассчитывают необходимое сопротивление заземляющего устройства R з в соответствии с табл. 1 1 . В случае, если R з больше допустимого значения, то в дальнейших расчетах R з принимают равным допустимому значению.

2.3 Определяют расчетное удельное сопротивление грунта ρ р :

ρ р = ρ изм , Ом ∙ м (2)

где ρ изм – удельное электрическое сопротивление грунта, полученное измерением или из справочной литературы (табл.2); - коэффициента сезонности, значение которого зависит от климатической зоны; (для четвертой климатической зоны со средними низшими температурами в январе от 0 до – 5 0 С и высшими в июле от +23 до +26 0 С = 1,3 ).

При высоком удельном сопротивлении земли применяют способы искусственного снижения ρ изм в целях уменьшения размеров и количества используемых электродов и площади территории, занимаемой заземлителем. Существенного результата достигают химической обработкой области вокруг заземлителей с помощью электролитов, либо путем укладки заземлителей в котлованы с насыпным углем, коксом, глиной.

) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

Формула расчета сопротивления заземления одиночного вертикального заземлителя:


где:
ρ - удельное сопротивление грунта (Ом*м )
L - длина заземлителя (м)
d - диаметр заземлителя (м)
T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π - математическая константа Пи (3,141592)
ln - натуральный логарифм

Для электролитического заземления ZANDZ формула расчета сопротивления заземления упрощается до вида:

- для комплекта ZZ-100-102

Вклад соединительного заземляющего проводника здесь не учитывается.

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор - расстояние между заземляющими электродами. В формулах расчета заземления этот фактор описывается величиной "коэффициент использования ".

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов - для модульного
  • не менее 7 метров - для электролитического

Соединение электродов в заземлитель

Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

Сечение проводника часто выбирается - 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

Для частного дома без молниеприемников достаточно медного провода сечением 16-25 мм² .

Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления ".

Сервис расчета вероятности удара молнии в объект

Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным , защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Для того, чтобы приступить к расчету, .